openpose pytorch代码分析
github: https://github.com/tensorboy/pytorch_Realtime_Multi-Person_Pose_Estimation
# -*- coding: utf-8 -*
import os
import re
import sys
import cv2
import math
import time
import scipy
import argparse
import matplotlib
import numpy as np
import pylab as plt
from joblib import Parallel, delayed
import util
import torch
import torch as T
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
from collections import OrderedDict
from config_reader import config_reader
from scipy.ndimage.filters import gaussian_filter
#parser = argparse.ArgumentParser()
#parser.add_argument('--t7_file', required=True)
#parser.add_argument('--pth_file', required=True)
#args = parser.parse_args() torch.set_num_threads(torch.get_num_threads())
weight_name = './model/pose_model.pth' blocks = {}
# 从1开始算的limb,图对应:Pose Output Format
# find connection in the specified sequence, center 29 is in the position 15
limbSeq = [[2,3], [2,6], [3,4], [4,5], [6,7], [7,8], [2,9], [9,10], \
[10,11], [2,12], [12,13], [13,14], [2,1], [1,15], [15,17], \
[1,16], [16,18], [3,17], [6,18]] # the middle joints heatmap correpondence
mapIdx = [[31,32], [39,40], [33,34], [35,36], [41,42], [43,44], [19,20], [21,22], \
[23,24], [25,26], [27,28], [29,30], [47,48], [49,50], [53,54], [51,52], \
[55,56], [37,38], [45,46]] # visualize
colors = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0], [85, 255, 0], [0, 255, 0], \
[0, 255, 85], [0, 255, 170], [0, 255, 255], [0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255], \
[170, 0, 255], [255, 0, 255], [255, 0, 170], [255, 0, 85]] # heatmap channel为19 表示关节点的score
# PAF channel为38 表示limb的单位向量
block0 = [{'conv1_1':[3,64,3,1,1]},{'conv1_2':[64,64,3,1,1]},{'pool1_stage1':[2,2,0]},{'conv2_1':[64,128,3,1,1]},{'conv2_2':[128,128,3,1,1]},{'pool2_stage1':[2,2,0]},{'conv3_1':[128,256,3,1,1]},{'conv3_2':[256,256,3,1,1]},{'conv3_3':[256,256,3,1,1]},{'conv3_4':[256,256,3,1,1]},{'pool3_stage1':[2,2,0]},{'conv4_1':[256,512,3,1,1]},{'conv4_2':[512,512,3,1,1]},{'conv4_3_CPM':[512,256,3,1,1]},{'conv4_4_CPM':[256,128,3,1,1]}] blocks['block1_1'] = [{'conv5_1_CPM_L1':[128,128,3,1,1]},{'conv5_2_CPM_L1':[128,128,3,1,1]},{'conv5_3_CPM_L1':[128,128,3,1,1]},{'conv5_4_CPM_L1':[128,512,1,1,0]},{'conv5_5_CPM_L1':[512,38,1,1,0]}] blocks['block1_2'] = [{'conv5_1_CPM_L2':[128,128,3,1,1]},{'conv5_2_CPM_L2':[128,128,3,1,1]},{'conv5_3_CPM_L2':[128,128,3,1,1]},{'conv5_4_CPM_L2':[128,512,1,1,0]},{'conv5_5_CPM_L2':[512,19,1,1,0]}] for i in range(2,7):
blocks['block%d_1'%i] = [{'Mconv1_stage%d_L1'%i:[185,128,7,1,3]},{'Mconv2_stage%d_L1'%i:[128,128,7,1,3]},{'Mconv3_stage%d_L1'%i:[128,128,7,1,3]},{'Mconv4_stage%d_L1'%i:[128,128,7,1,3]},
{'Mconv5_stage%d_L1'%i:[128,128,7,1,3]},{'Mconv6_stage%d_L1'%i:[128,128,1,1,0]},{'Mconv7_stage%d_L1'%i:[128,38,1,1,0]}]
blocks['block%d_2'%i] = [{'Mconv1_stage%d_L2'%i:[185,128,7,1,3]},{'Mconv2_stage%d_L2'%i:[128,128,7,1,3]},{'Mconv3_stage%d_L2'%i:[128,128,7,1,3]},{'Mconv4_stage%d_L2'%i:[128,128,7,1,3]},
{'Mconv5_stage%d_L2'%i:[128,128,7,1,3]},{'Mconv6_stage%d_L2'%i:[128,128,1,1,0]},{'Mconv7_stage%d_L2'%i:[128,19,1,1,0]}] def make_layers(cfg_dict):
layers = []
for i in range(len(cfg_dict)-1):
one_ = cfg_dict[i]
for k,v in one_.iteritems():
if 'pool' in k:
layers += [nn.MaxPool2d(kernel_size=v[0], stride=v[1], padding=v[2] )]
else:
conv2d = nn.Conv2d(in_channels=v[0], out_channels=v[1], kernel_size=v[2], stride = v[3], padding=v[4])
layers += [conv2d, nn.ReLU(inplace=True)]
one_ = cfg_dict[-1].keys()
k = one_[0]
v = cfg_dict[-1][k]
conv2d = nn.Conv2d(in_channels=v[0], out_channels=v[1], kernel_size=v[2], stride = v[3], padding=v[4])
layers += [conv2d]
return nn.Sequential(*layers) layers = []
for i in range(len(block0)):
one_ = block0[i]
for k,v in one_.iteritems():
if 'pool' in k:
layers += [nn.MaxPool2d(kernel_size=v[0], stride=v[1], padding=v[2] )]
else:
conv2d = nn.Conv2d(in_channels=v[0], out_channels=v[1], kernel_size=v[2], stride = v[3], padding=v[4])
layers += [conv2d, nn.ReLU(inplace=True)] models = {}
models['block0']=nn.Sequential(*layers) for k,v in blocks.iteritems():
models[k] = make_layers(v) class pose_model(nn.Module):
def __init__(self,model_dict,transform_input=False):
super(pose_model, self).__init__()
self.model0 = model_dict['block0']
self.model1_1 = model_dict['block1_1']
self.model2_1 = model_dict['block2_1']
self.model3_1 = model_dict['block3_1']
self.model4_1 = model_dict['block4_1']
self.model5_1 = model_dict['block5_1']
self.model6_1 = model_dict['block6_1'] self.model1_2 = model_dict['block1_2']
self.model2_2 = model_dict['block2_2']
self.model3_2 = model_dict['block3_2']
self.model4_2 = model_dict['block4_2']
self.model5_2 = model_dict['block5_2']
self.model6_2 = model_dict['block6_2'] def forward(self, x):
out1 = self.model0(x) out1_1 = self.model1_1(out1)
out1_2 = self.model1_2(out1)
out2 = torch.cat([out1_1,out1_2,out1],1) out2_1 = self.model2_1(out2)
out2_2 = self.model2_2(out2)
out3 = torch.cat([out2_1,out2_2,out1],1) out3_1 = self.model3_1(out3)
out3_2 = self.model3_2(out3)
out4 = torch.cat([out3_1,out3_2,out1],1) out4_1 = self.model4_1(out4)
out4_2 = self.model4_2(out4)
out5 = torch.cat([out4_1,out4_2,out1],1) out5_1 = self.model5_1(out5)
out5_2 = self.model5_2(out5)
out6 = torch.cat([out5_1,out5_2,out1],1) out6_1 = self.model6_1(out6)
out6_2 = self.model6_2(out6) return out6_1,out6_2 model = pose_model(models)
model.load_state_dict(torch.load(weight_name))
model.cuda()
model.float()
model.eval() param_, model_ = config_reader() #torch.nn.functional.pad(img pad, mode='constant', value=model_['padValue'])
tic = time.time()
test_image = './sample_image/ski.jpg'
#test_image = 'a.jpg'
oriImg = cv2.imread(test_image) # B,G,R order
imageToTest = Variable(T.transpose(T.transpose(T.unsqueeze(torch.from_numpy(oriImg).float(),0),2,3),1,2),volatile=True).cuda() multiplier = [x * model_['boxsize'] / oriImg.shape[0] for x in param_['scale_search']] # 不同scale输入 heatmap_avg = torch.zeros((len(multiplier),19,oriImg.shape[0], oriImg.shape[1])).cuda()
paf_avg = torch.zeros((len(multiplier),38,oriImg.shape[0], oriImg.shape[1])).cuda()
#print heatmap_avg.size() toc =time.time()
print 'time is %.5f'%(toc-tic)
tic = time.time()
for m in range(len(multiplier)):
scale = multiplier[m]
h = int(oriImg.shape[0]*scale)
w = int(oriImg.shape[1]*scale)
pad_h = 0 if (h%model_['stride']==0) else model_['stride'] - (h % model_['stride'])
pad_w = 0 if (w%model_['stride']==0) else model_['stride'] - (w % model_['stride'])
new_h = h+pad_h
new_w = w+pad_w imageToTest = cv2.resize(oriImg, (0,0), fx=scale, fy=scale, interpolation=cv2.INTER_CUBIC)
imageToTest_padded, pad = util.padRightDownCorner(imageToTest, model_['stride'], model_['padValue'])
imageToTest_padded = np.transpose(np.float32(imageToTest_padded[:,:,:,np.newaxis]), (3,2,0,1))/256 - 0.5
# (-0.5~0.5)
feed = Variable(T.from_numpy(imageToTest_padded)).cuda()
output1,output2 = model(feed)
print output1.size()
print output2.size()
heatmap = nn.UpsamplingBilinear2d((oriImg.shape[0], oriImg.shape[1])).cuda()(output2) # 对output上采样至原图大小 paf = nn.UpsamplingBilinear2d((oriImg.shape[0], oriImg.shape[1])).cuda()(output1) # 同理 heatmap_avg[m] = heatmap[0].data
paf_avg[m] = paf[0].data toc =time.time()
print 'time is %.5f'%(toc-tic)
tic = time.time()
# 不同scale的heatmap和PAF取均值
heatmap_avg = T.transpose(T.transpose(T.squeeze(T.mean(heatmap_avg, 0)),0,1),1,2).cuda()
paf_avg = T.transpose(T.transpose(T.squeeze(T.mean(paf_avg, 0)),0,1),1,2).cuda()
heatmap_avg=heatmap_avg.cpu().numpy()
paf_avg = paf_avg.cpu().numpy()
toc =time.time()
print 'time is %.5f'%(toc-tic)
tic = time.time() all_peaks = []
peak_counter = 0 #maps =
# picture array is reversed
for part in range(18): # 18个关节点的featuremap
map_ori = heatmap_avg[:,:,part]
map = gaussian_filter(map_ori, sigma=3) map_left = np.zeros(map.shape)
map_left[1:,:] = map[:-1,:]
map_right = np.zeros(map.shape)
map_right[:-1,:] = map[1:,:]
map_up = np.zeros(map.shape)
map_up[:,1:] = map[:,:-1]
map_down = np.zeros(map.shape)
map_down[:,:-1] = map[:,1:] # 计算是否为局部极值
peaks_binary = np.logical_and.reduce((map>=map_left, map>=map_right, map>=map_up, map>=map_down, map > param_['thre1']))
# peaks_binary = T.eq(
# peaks = zip(T.nonzero(peaks_binary)[0],T.nonzero(peaks_binary)[0]) peaks = zip(np.nonzero(peaks_binary)[1], np.nonzero(peaks_binary)[0]) # note reverse peaks_with_score = [x + (map_ori[x[1],x[0]],) for x in peaks]
id = range(peak_counter, peak_counter + len(peaks))
peaks_with_score_and_id = [peaks_with_score[i] + (id[i],) for i in range(len(id))] all_peaks.append(peaks_with_score_and_id) # 一个关节点featuremap上不同人的peak [[y, x, peak_score, id)],...]
peak_counter += len(peaks) # 计算线性积分 采样10个点计算
connection_all = []
special_k = []
mid_num = 10 for k in range(len(mapIdx)):
score_mid = paf_avg[:,:,[x-19 for x in mapIdx[k]]] # channel为2的paf_avg,表示PAF向量
candA = all_peaks[limbSeq[k][0]-1] #第k个limb中左关节点的候选集合A(不同人的关节点)
candB = all_peaks[limbSeq[k][1]-1] #第k个limb中右关节点的候选集合B(不同人的关节点)
nA = len(candA)
nB = len(candB)
# indexA, indexB = limbSeq[k]
if(nA != 0 and nB != 0): # 有候选时开始连接
connection_candidate = []
for i in range(nA):
for j in range(nB):
vec = np.subtract(candB[j][:2], candA[i][:2])
norm = math.sqrt(vec[0]*vec[0] + vec[1]*vec[1])
vec = np.divide(vec, norm) # 计算单位向量 startend = zip(np.linspace(candA[i][0], candB[j][0], num=mid_num), \
np.linspace(candA[i][1], candB[j][1], num=mid_num)) # 在A[i],B[j]连接线上采样mid_num个点 # 计算采样点的PAF向量
vec_x = np.array([score_mid[int(round(startend[I][1])), int(round(startend[I][0])), 0] \
for I in range(len(startend))])
vec_y = np.array([score_mid[int(round(startend[I][1])), int(round(startend[I][0])), 1] \
for I in range(len(startend))]) # 采样点的PAF向量与limb的单位向量计算余弦相似度score,内积
score_midpts = np.multiply(vec_x, vec[0]) + np.multiply(vec_y, vec[1])
score_with_dist_prior = sum(score_midpts)/len(score_midpts) + min(0.5*oriImg.shape[0]/norm-1, 0)
criterion1 = len(np.nonzero(score_midpts > param_['thre2'])[0]) > 0.8 * len(score_midpts)
criterion2 = score_with_dist_prior > 0
if criterion1 and criterion2:
# (i,j,score,score_all)
connection_candidate.append([i, j, score_with_dist_prior, score_with_dist_prior+candA[i][2]+candB[j][2]]) connection_candidate = sorted(connection_candidate, key=lambda x: x[2], reverse=True) # 按score排序
connection = np.zeros((0,5))
for c in range(len(connection_candidate)):
i,j,s = connection_candidate[c][0:3]
if(i not in connection[:,3] and j not in connection[:,4]):
connection = np.vstack([connection, [candA[i][3], candB[j][3], s, i, j]]) # A_id, B_id, score, i, j
if(len(connection) >= min(nA, nB)):
break connection_all.append(connection) # 多个符合当前limb的组合 [[A_id, B_id, score, i, j],...]
else:
special_k.append(k)
connection_all.append([]) '''
function: 关节点连成每个人的limb
subset: last number in each row is the total parts number of that person
subset: the second last number in each row is the score of the overall configuration
candidate: 候选关节点
connection_all: 候选limb '''
subset = -1 * np.ones((0, 20))
candidate = np.array([item for sublist in all_peaks for item in sublist]) # 一个id的(y,x,score,id)(关节点) for k in range(len(mapIdx)):
if k not in special_k:
partAs = connection_all[k][:,0] # 第k个limb,左端点的候选id集合
partBs = connection_all[k][:,1] # 第k个limb,右端点的候选id集合
indexA, indexB = np.array(limbSeq[k]) - 1 # 关节点index for i in range(len(connection_all[k])): #= 1:size(temp,1)
found = 0
subset_idx = [-1, -1]
for j in range(len(subset)): #1:size(subset,1): 遍历subset里每个人,看当前两个关节点出现过几次
if subset[j][indexA] == partAs[i] or subset[j][indexB] == partBs[i]:
subset_idx[found] = j
found += 1 if found == 1: # 在这个人的subset里连上这个limb
j = subset_idx[0]
if(subset[j][indexB] != partBs[i]):
subset[j][indexB] = partBs[i]
subset[j][-1] += 1
subset[j][-2] += candidate[partBs[i].astype(int), 2] + connection_all[k][i][2]
elif(subset[j][indexA] != partAs[i]):
subset[j][indexA] = partAs[i]
subset[j][-1] += 1
subset[j][-2] += candidate[partAs[i].astype(int), 2] + connection_all[k][i][2] elif found == 2: # if found 2 and disjoint, merge them
j1, j2 = subset_idx
print "found = 2"
membership = ((subset[j1]>=0).astype(int) + (subset[j2]>=0).astype(int))[:-2]
if len(np.nonzero(membership == 2)[0]) == 0:
# 如果两个人的相同关节点没有在各自的subset中都连成limb,那么合并两个subset构成一个人
subset[j1][:-2] += (subset[j2][:-2] + 1)
subset[j1][-2:] += subset[j2][-2:]
subset[j1][-2] += connection_all[k][i][2]
subset = np.delete(subset, j2, 0)
# To-Do 这里有问题, 怎么合并才对?
# else: # as like found == 1
# subset[j1][indexB] = partBs[i]
# subset[j1][-1] += 1
# subset[j1][-2] += candidate[partBs[i].astype(int), 2] + connection_all[k][i][2] # if find no partA in the subset, create a new subset
elif not found and k < 17:
row = -1 * np.ones(20)
row[indexA] = partAs[i]
row[indexB] = partBs[i]
row[-1] = 2
row[-2] = sum(candidate[connection_all[k][i,:2].astype(int), 2]) + connection_all[k][i][2]
subset = np.vstack([subset, row]) # delete some rows of subset which has few parts occur
deleteIdx = [];
for i in range(len(subset)):
if subset[i][-1] < 4 or subset[i][-2]/subset[i][-1] < 0.4:
deleteIdx.append(i)
subset = np.delete(subset, deleteIdx, axis=0) canvas = cv2.imread(test_image) # B,G,R order
for i in range(18):
for j in range(len(all_peaks[i])):
cv2.circle(canvas, all_peaks[i][j][0:2], 4, colors[i], thickness=-1) stickwidth = 4 for i in range(17):
for n in range(len(subset)):
index = subset[n][np.array(limbSeq[i])-1] # limb的两个关节点index
if -1 in index:
continue
cur_canvas = canvas.copy()
Y = candidate[index.astype(int), 0] # 两个index点的纵坐标
X = candidate[index.astype(int), 1] # 两个index点的横坐标
mX = np.mean(X)
mY = np.mean(Y)
length = ((X[0] - X[1]) ** 2 + (Y[0] - Y[1]) ** 2) ** 0.5
angle = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1]))
polygon = cv2.ellipse2Poly((int(mY),int(mX)), (int(length/2), stickwidth), int(angle), 0, 360, 1)
cv2.fillConvexPoly(cur_canvas, polygon, colors[i])
canvas = cv2.addWeighted(canvas, 0.4, cur_canvas, 0.6, 0) #Parallel(n_jobs=1)(delayed(handle_one)(i) for i in range(18)) toc =time.time()
print 'time is %.5f'%(toc-tic)
cv2.imwrite('result.png',canvas)
openpose pytorch代码分析的更多相关文章
- (原)SphereFace及其pytorch代码
转载请注明出处: http://www.cnblogs.com/darkknightzh/p/8524937.html 论文: SphereFace: Deep Hypersphere Embeddi ...
- 目标检测之Faster-RCNN的pytorch代码详解(数据预处理篇)
首先贴上代码原作者的github:https://github.com/chenyuntc/simple-faster-rcnn-pytorch(非代码作者,博文只解释代码) 今天看完了simple- ...
- 残差网络resnet理解与pytorch代码实现
写在前面 深度残差网络(Deep residual network, ResNet)自提出起,一次次刷新CNN模型在ImageNet中的成绩,解决了CNN模型难训练的问题.何凯明大神的工作令人佩服 ...
- Android代码分析工具lint学习
1 lint简介 1.1 概述 lint是随Android SDK自带的一个静态代码分析工具.它用来对Android工程的源文件进行检查,找出在正确性.安全.性能.可使用性.可访问性及国际化等方面可能 ...
- pmd静态代码分析
在正式进入测试之前,进行一定的静态代码分析及code review对代码质量及系统提高是有帮助的,以上为数据证明 Pmd 它是一个基于静态规则集的Java源码分析器,它可以识别出潜在的如下问题:– 可 ...
- [Asp.net 5] DependencyInjection项目代码分析-目录
微软DI文章系列如下所示: [Asp.net 5] DependencyInjection项目代码分析 [Asp.net 5] DependencyInjection项目代码分析2-Autofac [ ...
- [Asp.net 5] DependencyInjection项目代码分析4-微软的实现(5)(IEnumerable<>补充)
Asp.net 5的依赖注入注入系列可以参考链接: [Asp.net 5] DependencyInjection项目代码分析-目录 我们在之前讲微软的实现时,对于OpenIEnumerableSer ...
- 完整全面的Java资源库(包括构建、操作、代码分析、编译器、数据库、社区等等)
构建 这里搜集了用来构建应用程序的工具. Apache Maven:Maven使用声明进行构建并进行依赖管理,偏向于使用约定而不是配置进行构建.Maven优于Apache Ant.后者采用了一种过程化 ...
- STM32启动代码分析 IAR 比较好
stm32启动代码分析 (2012-06-12 09:43:31) 转载▼ 最近开始使用ST的stm32w108芯片(也是一款zigbee芯片).开始看他的启动代码看的晕晕呼呼呼的. 还好在c ...
随机推荐
- 利用iscroll实现上拉加载下拉刷新
1.首先引用isScroll插件 说明:页面加载时初始化isScroll,然后调用pullDownAction()和pullUpAction(),每次切换tab时,只需要对pullDownAction ...
- hibernate框架学习之核心配置文件
hibernate.cfg.xml <?xml version='1.0' encoding='utf-8'?> <!DOCTYPE hibernate-configuration ...
- CodeForces 931C Laboratory Work 水题,构造
*这种题好像不用写题解... 题意: 一个人要改动别人的实验记录,实验记录记录是一个集合 实验记录本身满足:$max(X)-min(X)<=2$ 改动结果要求: 1.新的集合平均值和之前的一样 ...
- ebs 12.1.1 单节点多用户安装
本次测试环境:操作系统 oracle linux 6.9 oracle ebs 12.1.1 192.168.20.210 erpapp1.hthorizon.com erpapp1 yum ...
- python时间日期格式化和反格式化
strftime()和strptime()行为 date,datetime和time对象都支持一种 strftime(format)方法,以创建一个表示显式格式字符串控制下的时间的字符串.从广义上讲, ...
- 图解elasticsearch的_source、_all、store和index
Elasticsearch中有几个关键属性容易混淆,很多人搞不清楚_source字段里存储的是什么?store属性的true或false和_source字段有什么关系?store属性设置为true和_ ...
- Python traceback的优雅处理
刚接触Python的时候,简单的异常处理已经可以帮助我们解决大多数问题,但是随着逐渐地深入,我们会发现有很多情况下简单的异常处理已经无法解决问题了,如下代码,单纯的打印异常所能提供的信息会非常有限. ...
- Android启动模式之singleinstance的坑
前言 在实际应用中,使用singleinstance启动模式时,会遇到一些奇奇怪怪的问题.Android有四种启动模式,分别是standard,singleTop,singleTask,singleI ...
- nginx 配置白名单
在http 模块 增加 geo $remote_addr $ip_whitelist{ default 0; include white_ip.conf; } 在location 模块 增加 (注意i ...
- js——作用域和闭包
1. js是编译语言,但是它不是提前编译,编译结果不能在分布式系统中移植.大部分情况下,js的编译发生在代码执行前的几微秒(甚至更短) 2. 一般的编译步骤 分词/词法分析:把字符串分解成词法单元 ...