Medium!

题目描述:

根据一棵树的中序遍历与后序遍历构造二叉树。

注意:
你可以假设树中没有重复的元素。

例如,给出

中序遍历 inorder = [9,3,15,20,7]
后序遍历 postorder = [9,15,7,20,3]

返回如下的二叉树:

    3
/ \
9 20
/ \
15 7

解题思路:

这道题要求从中序和后序遍历的结果来重建原二叉树,我们知道中序的遍历顺序是左-根-右,后序的顺序是左-右-根,对于这种树的重建一般都是采用递归来做,可参见http://www.cnblogs.com/grandyang/p/4295245.html,针对这道题,由于后序的顺序的最后一个肯定是根,所以原二叉树的根节点可以知道,题目中给了一个很关键的条件就是树中没有相同元素,有了这个条件我们就可以在中序遍历中也定位出根节点的位置,并以根节点的位置将中序遍历拆分为左右两个部分,分别对其递归调用原函数。

C++解法一:

 /**
* Definition for binary tree
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
TreeNode *buildTree(vector<int> &inorder, vector<int> &postorder) {
return buildTree(inorder, , inorder.size() - , postorder, , postorder.size() - );
}
TreeNode *buildTree(vector<int> &inorder, int iLeft, int iRight, vector<int> &postorder, int pLeft, int pRight) {
if (iLeft > iRight || pLeft > pRight) return NULL;
TreeNode *cur = new TreeNode(postorder[pRight]);
int i = ;
for (i = iLeft; i < inorder.size(); ++i) {
if (inorder[i] == cur->val) break;
}
cur->left = buildTree(inorder, iLeft, i - , postorder, pLeft, pLeft + i - iLeft - );
cur->right = buildTree(inorder, i + , iRight, postorder, pLeft + i - iLeft, pRight - );
return cur;
}
};

上述代码中需要小心的地方就是递归是postorder的左右index很容易写错,比如 pLeft + i - iLeft - 1, 这个又长又不好记,首先我们要记住 i - iLeft 是计算inorder中根节点位置和左边起始点的距离,然后再加上postorder左边起始点然后再减1。我们可以这样分析,如果根节点就是左边起始点的话,那么拆分的话左边序列应该为空集,此时i - iLeft 为0, pLeft + 0 - 1 < pLeft, 那么再递归调用时就会返回NULL, 成立。如果根节点是左边起始点紧跟的一个,那么i - iLeft 为1, pLeft + 1 - 1 = pLeft,再递归调用时还会生成一个节点,就是pLeft位置上的节点,为原二叉树的一个叶节点。

我们下面来看一个例子, 某一二叉树的中序和后序遍历分别为:

Inorder:    11  4  5  13  8  9

Postorder:  11  4  13  9  8  5  

11  4  5  13  8  9      =>          5

11  4  13  9  8                  /  \

11  4     13   8  9      =>         5

11  4     13  9                    /  \

                             4   8

11       13    9        =>         5

11       13    9                    /  \

                             4   8

                            /    /     \

                           11    13    9

LeetCode(106):从中序与后序遍历序列构造二叉树的更多相关文章

  1. Leetcode:105. 从前序与中序遍历序列构造二叉树&106. 从中序与后序遍历序列构造二叉树

    Leetcode:105. 从前序与中序遍历序列构造二叉树&106. 从中序与后序遍历序列构造二叉树 Leetcode:105. 从前序与中序遍历序列构造二叉树&106. 从中序与后序 ...

  2. Java实现 LeetCode 106 从中序与后序遍历序列构造二叉树

    106. 从中序与后序遍历序列构造二叉树 根据一棵树的中序遍历与后序遍历构造二叉树. 注意: 你可以假设树中没有重复的元素. 例如,给出 中序遍历 inorder = [9,3,15,20,7] 后序 ...

  3. 【2】【leetcode-105,106】 从前序与中序遍历序列构造二叉树,从中序与后序遍历序列构造二叉树

    105. 从前序与中序遍历序列构造二叉树 (没思路,典型记住思路好做) 根据一棵树的前序遍历与中序遍历构造二叉树. 注意:你可以假设树中没有重复的元素. 例如,给出 前序遍历 preorder = [ ...

  4. [leetcode]从中序与后序/前序遍历序列构造二叉树

    从中序与后序遍历序列构造二叉树 根据一棵树的中序遍历与后序遍历构造二叉树. 注意: 你可以假设树中没有重复的元素. 例如,给出 中序遍历 inorder = [9,3,15,20,7] 后序遍历 po ...

  5. LeetCode106. 从中序与后序遍历序列构造二叉树

    106. 从中序与后序遍历序列构造二叉树 描述 根据一棵树的中序遍历与后序遍历构造二叉树. 注意: 你可以假设树中没有重复的元素. 示例 例如,给出 中序遍历 inorder = [9,3,15,20 ...

  6. LeetCode 中级 - 从前序与中序遍历序列构造二叉树(105)

    一个前序遍历序列和一个中序遍历序列可以确定一颗唯一的二叉树. 根据前序遍历的特点, 知前序序列(PreSequence)的首个元素(PreSequence[0])为二叉树的根(root),  然后在中 ...

  7. Java实现 LeetCode 105 从前序与中序遍历序列构造二叉树

    105. 从前序与中序遍历序列构造二叉树 根据一棵树的前序遍历与中序遍历构造二叉树. 注意: 你可以假设树中没有重复的元素. 例如,给出 前序遍历 preorder = [3,9,20,15,7] 中 ...

  8. [LeetCode]105. 从前序与中序遍历序列构造二叉树(递归)、108. 将有序数组转换为二叉搜索树(递归、二分)

    题目 05. 从前序与中序遍历序列构造二叉树 根据一棵树的前序遍历与中序遍历构造二叉树. 注意: 你可以假设树中没有重复的元素. 题解 使用HashMap记录当前子树根节点在中序遍历中的位置,方便每次 ...

  9. LeetCode---105. 从前序与中序遍历序列构造二叉树 (Medium)

    题目:105. 从前序与中序遍历序列构造二叉树 根据一棵树的前序遍历与中序遍历构造二叉树. 注意: 你可以假设树中没有重复的元素. 例如,给出 前序遍历 preorder = [3,9,20,15,7 ...

随机推荐

  1. 洛谷P2699小浩的幂次运算

    二分走一波,没想到题解的大佬做法 p_q 注意爆long long,所以先对数取一下上限 二分确定下限,然后输出 #include<stdio.h> #include<math.h& ...

  2. 使用cross-env解决跨平台设置NODE_ENV的问题

    使用方法: 安装cross-env:npm install cross-env --save-dev 在NODE_ENV=xxxxxxx前面添加cross-env就可以了.

  3. 【blog】SpringBoot的可执行文件如何在Linux中后台运行(待补充...)

    参考链接 linux下利用nohup后台运行jar文件包程序:http://blog.csdn.net/tang9140/article/details/38899345

  4. ionic 照相机 Camera

    1.官网: https://ionicframework.com/docs/native/camera/#DestinationType 2.引入插件 $ ionic cordova plugin a ...

  5. 迅为-ARM嵌入式开发一体化工业9.7寸屏幕 平板式智能触控屏

    产品名称:迅为9.7寸IPS高清屏幕 适用于:[iTOP-4412精英版][iTOP-4412全能版][iTOP-4418开发板][迅为-iMX6开发板] 分辨率:1024*768 触摸屏类型:电容屏 ...

  6. 查看oracle 用户执行的sql语句历史记录

      select * from v$sqlarea t order by t.LAST_ACTIVE_TIME desc

  7. 【转】python模块分析之unittest测试(五)

    [转]python模块分析之unittest测试(五) 系列文章 python模块分析之random(一) python模块分析之hashlib加密(二) python模块分析之typing(三) p ...

  8. Python运维开发基础01-语法基础【转】

    开篇导语 整个Python运维开发教学采用的是最新的3.5.2版,当遇到2.x和3.x版本的不同点时,会采取演示的方式,让同学们了解. 教学预计分为四大部分,Python开发基础,Python开发进阶 ...

  9. 026_lsof命令经验总结

    一.lsof处理删除文件未释放句柄问题. 但是如果你不知道是哪个文件,或者是很多文件都有这样的情况,那你需要使用如下命令 lsof |grep deleted 注:这个deleted表示该已经删除了的 ...

  10. 022_nginx常用模块之ngx_http_upstream_check_module

    ngx_http_upstream_check_module 该模块可以为Tengine提供主动式后端服务器健康检查的功能. 该模块在Tengine-1.4.0版本以前没有默认开启,它可以在配置编译选 ...