Medium!

题目描述:

根据一棵树的中序遍历与后序遍历构造二叉树。

注意:
你可以假设树中没有重复的元素。

例如,给出

中序遍历 inorder = [9,3,15,20,7]
后序遍历 postorder = [9,15,7,20,3]

返回如下的二叉树:

    3
/ \
9 20
/ \
15 7

解题思路:

这道题要求从中序和后序遍历的结果来重建原二叉树,我们知道中序的遍历顺序是左-根-右,后序的顺序是左-右-根,对于这种树的重建一般都是采用递归来做,可参见http://www.cnblogs.com/grandyang/p/4295245.html,针对这道题,由于后序的顺序的最后一个肯定是根,所以原二叉树的根节点可以知道,题目中给了一个很关键的条件就是树中没有相同元素,有了这个条件我们就可以在中序遍历中也定位出根节点的位置,并以根节点的位置将中序遍历拆分为左右两个部分,分别对其递归调用原函数。

C++解法一:

 /**
* Definition for binary tree
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
TreeNode *buildTree(vector<int> &inorder, vector<int> &postorder) {
return buildTree(inorder, , inorder.size() - , postorder, , postorder.size() - );
}
TreeNode *buildTree(vector<int> &inorder, int iLeft, int iRight, vector<int> &postorder, int pLeft, int pRight) {
if (iLeft > iRight || pLeft > pRight) return NULL;
TreeNode *cur = new TreeNode(postorder[pRight]);
int i = ;
for (i = iLeft; i < inorder.size(); ++i) {
if (inorder[i] == cur->val) break;
}
cur->left = buildTree(inorder, iLeft, i - , postorder, pLeft, pLeft + i - iLeft - );
cur->right = buildTree(inorder, i + , iRight, postorder, pLeft + i - iLeft, pRight - );
return cur;
}
};

上述代码中需要小心的地方就是递归是postorder的左右index很容易写错,比如 pLeft + i - iLeft - 1, 这个又长又不好记,首先我们要记住 i - iLeft 是计算inorder中根节点位置和左边起始点的距离,然后再加上postorder左边起始点然后再减1。我们可以这样分析,如果根节点就是左边起始点的话,那么拆分的话左边序列应该为空集,此时i - iLeft 为0, pLeft + 0 - 1 < pLeft, 那么再递归调用时就会返回NULL, 成立。如果根节点是左边起始点紧跟的一个,那么i - iLeft 为1, pLeft + 1 - 1 = pLeft,再递归调用时还会生成一个节点,就是pLeft位置上的节点,为原二叉树的一个叶节点。

我们下面来看一个例子, 某一二叉树的中序和后序遍历分别为:

Inorder:    11  4  5  13  8  9

Postorder:  11  4  13  9  8  5  

11  4  5  13  8  9      =>          5

11  4  13  9  8                  /  \

11  4     13   8  9      =>         5

11  4     13  9                    /  \

                             4   8

11       13    9        =>         5

11       13    9                    /  \

                             4   8

                            /    /     \

                           11    13    9

LeetCode(106):从中序与后序遍历序列构造二叉树的更多相关文章

  1. Leetcode:105. 从前序与中序遍历序列构造二叉树&106. 从中序与后序遍历序列构造二叉树

    Leetcode:105. 从前序与中序遍历序列构造二叉树&106. 从中序与后序遍历序列构造二叉树 Leetcode:105. 从前序与中序遍历序列构造二叉树&106. 从中序与后序 ...

  2. Java实现 LeetCode 106 从中序与后序遍历序列构造二叉树

    106. 从中序与后序遍历序列构造二叉树 根据一棵树的中序遍历与后序遍历构造二叉树. 注意: 你可以假设树中没有重复的元素. 例如,给出 中序遍历 inorder = [9,3,15,20,7] 后序 ...

  3. 【2】【leetcode-105,106】 从前序与中序遍历序列构造二叉树,从中序与后序遍历序列构造二叉树

    105. 从前序与中序遍历序列构造二叉树 (没思路,典型记住思路好做) 根据一棵树的前序遍历与中序遍历构造二叉树. 注意:你可以假设树中没有重复的元素. 例如,给出 前序遍历 preorder = [ ...

  4. [leetcode]从中序与后序/前序遍历序列构造二叉树

    从中序与后序遍历序列构造二叉树 根据一棵树的中序遍历与后序遍历构造二叉树. 注意: 你可以假设树中没有重复的元素. 例如,给出 中序遍历 inorder = [9,3,15,20,7] 后序遍历 po ...

  5. LeetCode106. 从中序与后序遍历序列构造二叉树

    106. 从中序与后序遍历序列构造二叉树 描述 根据一棵树的中序遍历与后序遍历构造二叉树. 注意: 你可以假设树中没有重复的元素. 示例 例如,给出 中序遍历 inorder = [9,3,15,20 ...

  6. LeetCode 中级 - 从前序与中序遍历序列构造二叉树(105)

    一个前序遍历序列和一个中序遍历序列可以确定一颗唯一的二叉树. 根据前序遍历的特点, 知前序序列(PreSequence)的首个元素(PreSequence[0])为二叉树的根(root),  然后在中 ...

  7. Java实现 LeetCode 105 从前序与中序遍历序列构造二叉树

    105. 从前序与中序遍历序列构造二叉树 根据一棵树的前序遍历与中序遍历构造二叉树. 注意: 你可以假设树中没有重复的元素. 例如,给出 前序遍历 preorder = [3,9,20,15,7] 中 ...

  8. [LeetCode]105. 从前序与中序遍历序列构造二叉树(递归)、108. 将有序数组转换为二叉搜索树(递归、二分)

    题目 05. 从前序与中序遍历序列构造二叉树 根据一棵树的前序遍历与中序遍历构造二叉树. 注意: 你可以假设树中没有重复的元素. 题解 使用HashMap记录当前子树根节点在中序遍历中的位置,方便每次 ...

  9. LeetCode---105. 从前序与中序遍历序列构造二叉树 (Medium)

    题目:105. 从前序与中序遍历序列构造二叉树 根据一棵树的前序遍历与中序遍历构造二叉树. 注意: 你可以假设树中没有重复的元素. 例如,给出 前序遍历 preorder = [3,9,20,15,7 ...

随机推荐

  1. 6-12mysql库的操作

    1,mysql库的各种分类: nformation_schema: 虚拟库,不占用磁盘空间,存储的是数据库启动后的一些参数,如用户表信息.列信息.权限信息.字符信息等. performance_sch ...

  2. Centos 04 基础系统优化命令

    在Linux这个系统当中,几乎所有的硬件设备文件都在/dev这个目录内.举例来说,IDE介面的硬盘的文件名称即为/dev/hd[a-d],其中, 括号内的字母为a-d当中的任意一个,亦即有/dev/h ...

  3. 🍓 react,jroll滑动删除 🍓

    import React, { Component } from 'react'; import '../src/css/reset.css'; import '../src/css/delete.c ...

  4. Typecho反序列化导致前台 getshell 漏洞复现

    Typecho反序列化导致前台 getshell 漏洞复现 漏洞描述: Typecho是一款快速建博客的程序,外观简洁,应用广泛.这次的漏洞通过install.php安装程序页面的反序列化函数,造成了 ...

  5. 音乐app各部分笔记(一)

    7-11 播放器播放时间获取和更新 1.audio 有一个 ontimeupdate事件 播放过程中 随时触发 vue里面就是  @timeupdate   事件中有默认参数 e  通过e.targe ...

  6. MySql cmd下的学习笔记 —— 有关select的操作(max, min等常见函数)

    先把之前建的goods表找到 找到最贵的本店价(max) 找到最便宜的本店价(min) 查出一共还有多少商品(count) 查看商品价的平均价(avg) 查看本店有多少种商品 当count(*)时 输 ...

  7. SpringBoot+BootStrap多文件上传到本地

    1.application.yml文件配置 # 文件大小 MB必须大写 # maxFileSize 是单个文件大小 # maxRequestSize是设置总上传的数据大小 spring: servle ...

  8. Web方面的错误, 异常来自hresult:0x80070057(E_INVALIDARG)

    删除 C:/WINDOWS/Microsoft.NET/Framework/v4.0.30319/Temporary ASP.NET files 这个文件夹. 解决方法: 1.代码保存频繁一点.做一个 ...

  9. mysql配置修改项

    [mysqld] innodb_locks_unsafe_for_binlog = 1 transaction-isolation = READ-COMMITTED 作用:防死锁 ,提高并发入库速度

  10. ping 丢包或不通时链路测试说明【转】

    转自:https://help.aliyun.com/knowledge_detail/40573.html?spm=5176.2020520165.121.d157.4fe170291Qdp4l#W ...