费马小定理
题意:求s1+s2+s3+...+sn;si表示n划分i个数的n的划分的个数,如n=4,则s1=1,s2=3
    利用隔板定理可知,就是求(2^n-1)%mod-----Y
    现在已知 (2^mod-1)%mod = 1,所以  Y = 2^( (n%(mod-1) -1 +mod)%mod )%mod

证明( 定理:a^(p-1)==1%p,gcd(a,p)==1 ):
    (http://www.cnitblog.com/luckydmz/archive/2008/06/03/39458.html)
    构造模p的完全剩余系P = {0,1, 2, … ,p-1},
    因为gcd(a, p) = 1,所以A= {0*a, 1*a, 2*a, … ,(p-1)*a}也是模p的一个完全剩余系。
    就是说P和A在模p意义下是相等的。
    因为0 ≡ 0a (mod p),所以 P-{0} 与 A-{0*a}在模p意义下是相等的。
    记P'=P-{0},A'=A-{0*a}
    令W = πP' = 1 * 2 * 3 * 4 … * (p-1),Y = πA' = a * 2a *3a * 4a * …(p-1)a = W*a^(p-1)  //π表示连乘积
    有,W ≡ Y (mod p)
    即,W ≡ W*a^(p-1) (mod p)
    又因为,(W, p) = 1
    则有,1 ≡ a^(p-1) (mod p)

 /*
费马小定理
题意:求s1+s2+s3+...+sn;si表示n划分i个数的n的划分的个数,如n=4,则s1=1,s2=3
利用隔板定理可知,就是求(2^n-1)%mod-----Y
*/
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<algorithm>
#include<iostream>
#include<queue>
#include<map>
#include<stack>
#include<set>
#include<math.h>
using namespace std;
typedef long long int64;
//typedef __int64 int64;
typedef pair<int64,int64> PII;
#define MP(a,b) make_pair((a),(b))
const int maxn = ;
const int inf = 0x7fffffff;
const double pi=acos(-1.0);
const double eps = 1e-;
const int64 mod = +; int64 Fast_Pow( int64 a,int64 n,int64 mod ){
int64 res = ;
while( n>= ){
if( n& ){
res = res*a%mod;
}
a = a*a%mod;
n >>= ;
}
return res%mod;
} int64 GetNum( char str[],int64 mod ){
int64 res = ;
int len = strlen( str );
for( int i=;i<len;i++ ){
res = (res*+str[i]-'')%mod;
}
return res;
} int main(){
char str[ maxn ];
while( scanf("%s",str)!=EOF ){
int64 n = GetNum( str,mod- );
printf("%I64d\n",Fast_Pow( ,(n-+mod)%mod,mod ));
}
return ;
}

HDU4704+费马小定理的更多相关文章

  1. hdu4704之费马小定理+整数快速幂

    Sum Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others) Total Subm ...

  2. HDU4704Sum 费马小定理+大数取模

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4704 题目大意: 看似复杂,其实就是求整数n的划分数,4=1+1+2和4=1+2+1是不同的.因而可 ...

  3. HDU 4704 Sum( 费马小定理 + 快速幂 )

    链接:传送门 题意:求 N 的拆分数 思路: 吐嘈:求一个数 N 的拆分方案数,但是这个拆分方案十分 cd ,例如:4 = 4 , 4 = 1 + 3 , 4 = 3 + 1 , 4 = 2 + 2 ...

  4. hdu 4704 Sum (整数和分解+快速幂+费马小定理降幂)

    题意: 给n(1<n<),求(s1+s2+s3+...+sn)mod(1e9+7).其中si表示n由i个数相加而成的种数,如n=4,则s1=1,s2=3.                  ...

  5. nyoj1000_快速幂_费马小定理

    又见斐波那契数列 时间限制:1000 ms  |  内存限制:65535 KB 难度:4   描述 斐波那契数列大家应该很熟悉了吧.下面给大家引入一种新的斐波那契数列:M斐波那契数列. M斐波那契数列 ...

  6. poj 3734 Blocks 快速幂+费马小定理+组合数学

    题目链接 题意:有一排砖,可以染红蓝绿黄四种不同的颜色,要求红和绿两种颜色砖的个数都是偶数,问一共有多少种方案,结果对10007取余. 题解:刚看这道题第一感觉是组合数学,正向推了一会还没等推出来队友 ...

  7. 数论初步(费马小定理) - Happy 2004

    Description Consider a positive integer X,and let S be the sum of all positive integer divisors of 2 ...

  8. 【BZOJ1951】【SDOI2010】古代猪文 Lucas定理、中国剩余定理、exgcd、费马小定理

    Description “在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心……” ——选自猪王国民歌 很久很久以前,在山的那边 ...

  9. 数论 --- 费马小定理 + 快速幂 HDU 4704 Sum

    Sum Problem's Link:   http://acm.hdu.edu.cn/showproblem.php?pid=4704 Mean: 给定一个大整数N,求1到N中每个数的因式分解个数的 ...

随机推荐

  1. iOS 字体滚动效果 ScrollLabel

    写了一个简单的字体滚动效果. 用了一种取巧的方式,传入两个一摸一样的Label(当然也可以是别的视图), 话不多说,代码里面讲解. SEScrollLabel.h #import <UIKit/ ...

  2. 【leetcode】9. Palindrome Number

    题目描述: Determine whether an integer is a palindrome. Do this without extra space. 解题分析: ^_^个人觉得这道题没有什 ...

  3. 0<=i<iLen 在C++中

    for( i=0;0<= i<2; i++)这样的话会出现什么错误呢? 一直循环下去, 因为i>=一直成立

  4. MSDN 2005 安装问题

    在安装玩Visual Studio  MSDN 2005时,经常会出现这种问题:“无法显示 Microsoft 文档资源管理器,因为指定的帮助集合“ms-help://MS.MSDNQTR.v” 网上 ...

  5. webuploader上传插件

    一:官网 http://fex.baidu.com/webuploader/ 二:示例

  6. 谷歌浏览器支持小于12px的字体

    <!doctype html> <html> <head> <meta charset="utf-8"> <title> ...

  7. WinForm条码打印

    在这篇博客中,我曾经介绍了如何实现条形码的生成(生成jpg格式的图片),这篇博客借用上面生成的条码,能够实现条形码的打印功能. 出于批量打印操作的方便以及操作体验考虑,我选择了WinForm.功能很简 ...

  8. 基于css3新属性transform及原生js实现鼠标拖动3d立方体旋转

    基于css3新属性transform,实现3d立方体的旋转 通过原生JS,点击事件,鼠标按下.鼠标抬起和鼠标移动事件,实现3d立方体的拖动旋转,并将旋转角度实时的反应至界面上显示 实现原理:通过获取鼠 ...

  9. win32进程间通讯--共享内存

    小白一枚,如有不对,请各位大神多多指教! 最近看了看win32进程间通讯.简单写了写利用共享内存实现进程间通讯 使用共享内存实现进程间通讯: 1.在WM_CREATE消息下创建文件映射内核对象 hMa ...

  10. matlab之点运算基本思想及几何平移变换

    1.对数变换可以增强图像中较暗部分的细节,因为对数可以将较小的值放大,而较大的值缩小 2.伽马变换:y = (x + esp) ^ γ,x,y的取值范围是0到1,esp是补偿系数,γ为伽马系数.γ的不 ...