HDU 4549 M斐波那契数列(矩阵幂)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4549
题意:F[0]=a,F[1]=b,F[n]=F[n-1]*F[n-2]。
思路:手算一下可以发现,最后F[n]=a^x*b^y,其中x和y是连续的两项Fib。因此只要求出这两个系数x和y即可。注意这里A^x=A^(x%Phi(C)+Phi(C)) (mod C)。因此在求矩阵快速幂时模的数不是mod=1000000007,而是mod-1。
struct matrix
{
i64 a[2][2];
void init(int x)
{
clr(a,0);
if(x) a[0][0]=a[1][1]=1;
}
matrix operator*(matrix p)
{
matrix ans;
ans.init(0);
int i,j,k;
FOR0(k,2) FOR0(i,2) FOR0(j,2)
{
ans.a[i][j]+=a[i][k]*p.a[k][j]%(mod-1);
ans.a[i][j]%=(mod-1);
}
return ans;
}
matrix pow(int n)
{
matrix ans,p=*this;
ans.init(1);
while(n)
{
if(n&1) ans=ans*p;
p=p*p;
n>>=1;
}
return ans;
}
};
matrix p;
int a,b,n;
i64 Pow(i64 a,i64 b)
{
i64 ans=1;
while(b)
{
if(b&1) ans=ans*a%mod;
a=a*a%mod;
b>>=1;
}
return ans;
}
int main()
{
p.a[0][0]=p.a[1][0]=p.a[0][1]=1;
p.a[1][1]=0;
Rush(a)
{
RD(b,n);
if(n==0) PR(a);
else if(n==1) PR(b);
else
{
matrix temp=p.pow(n-2);
int x=(temp.a[0][1]+temp.a[1][1])%(mod-1);
int y=(temp.a[0][0]+temp.a[1][0])%(mod-1);
PR(Pow(a,x)*Pow(b,y)%mod);
}
}
}
HDU 4549 M斐波那契数列(矩阵幂)的更多相关文章
- hdu 4549 M斐波那契数列(快速幂 矩阵快速幂 费马小定理)
题目链接http://acm.hdu.edu.cn/showproblem.php?pid=4549: 题目是中文的很容易理解吧.可一开始我把题目看错了,这毛病哈哈. 一开始我看错题时,就用了一个快速 ...
- hdu 4549 M斐波那契数列 矩阵快速幂+欧拉定理
M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others) Problem ...
- [HDU 4549] M斐波那契数列
M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)Total Sub ...
- HDU 4549 M斐波那契数列(矩阵快速幂)
题目链接:M斐波那契数列 题意:$F[0]=a,F[1]=b,F[n]=F[n-1]*F[n-2]$.给定$a,b,n$,求$F[n]$. 题解:暴力打表后发现$ F[n]=a^{fib(n-1)} ...
- HDU 4549 M斐波那契数列(矩阵快速幂+费马小定理)
M斐波那契数列 Time Limit : 3000/1000ms (Java/Other) Memory Limit : 65535/32768K (Java/Other) Total Submi ...
- hdu 4549 M斐波拉契 (矩阵快速幂 + 费马小定理)
Problem DescriptionM斐波那契数列F[n]是一种整数数列,它的定义如下: F[0] = aF[1] = bF[n] = F[n-1] * F[n-2] ( n > 1 ) 现在 ...
- hdu 4549 M斐波那契数列(矩阵高速幂,高速幂降幂)
http://acm.hdu.edu.cn/showproblem.php?pid=4549 f[0] = a^1*b^0%p,f[1] = a^0*b^1%p,f[2] = a^1*b^1%p... ...
- 斐波那契数列 矩阵乘法优化DP
斐波那契数列 矩阵乘法优化DP 求\(f(n) \%1000000007\),\(n\le 10^{18}\) 矩阵乘法:\(i\times k\)的矩阵\(A\)乘\(k\times j\)的矩 ...
- HDU 1316 (斐波那契数列,大数相加,大数比较大小)
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1316 Recall the definition of the Fibonacci numbers: ...
随机推荐
- 将日志搬家到自己的站点 http://nowhereman.cn/
个人站点同步地址 : http://nowhereman.cn/
- 第一章 Web MVC简介
Web MVC简介 1.1.Web开发中的请求-响应模型: 在Web世界里,具体步骤如下: 1. Web浏览器(如IE)发起请求,如访问hao123主页 2. Web服务器(如Tomcat)接收请 ...
- php将数据库导出成excel的方法
<?php $fname = $_FILES['MyFile']['name']; $do = copy($_FILES['MyFile']['tmp_name'],$fname); if ($ ...
- 多线程 1-pthread 和NSThread
一.基本内容介绍: 进程: 正在运行的程序就叫进程 每个进程之间是相互独立的,每个进程均运行在其专用且受保护的内存空间内. 线程: 在程序内工作的基本执行单元(每个进程至 ...
- Oracle 异常处理
1.什么是异常 在PL/SQL中的一个警告或错误的情形都可被称为异常.包括编译时错误(PLS)和运行时错误(ORA).一个异常通常包含一个错误代码和错误文本,分别指示异常的编号和具体错误信息. 异 ...
- C# ASP.NET系统缓存全解析
原文:http://blog.csdn.net/wyxhd2008/article/details/8076105 目录(?)[-] 系统缓存的概述 页面输出缓存 页面局部缓存 文件缓存依赖 数据库缓 ...
- IntelliJ IDEA 15 安装
前言 因为今日14安装一插件崩溃,现安装了15. 版本:ideaIU-15.0.2 安装参考说明书 http://wiki.jikexueyuan.com/project/intellij-idea- ...
- 【POJ】【2960】S-Nim
博弈论 这题跟 BZOJ 1874 取石子游戏 差不多 先暴力求出10000以内的SG函数(利用定义来求即可) 然后每次询问直接将SG值异或起来即可…… Source Code Problem: Us ...
- uva 991
卡特兰数 最后不输出空行... #include <cstdio> #include <cstdlib> #include <cmath> #include &l ...
- cf 363A B C
A水题 ~~ 注意0输出 /************************************************************************* > Author ...