HDU 4549 M斐波那契数列(矩阵幂)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4549
题意:F[0]=a,F[1]=b,F[n]=F[n-1]*F[n-2]。
思路:手算一下可以发现,最后F[n]=a^x*b^y,其中x和y是连续的两项Fib。因此只要求出这两个系数x和y即可。注意这里A^x=A^(x%Phi(C)+Phi(C)) (mod C)。因此在求矩阵快速幂时模的数不是mod=1000000007,而是mod-1。
struct matrix
{
i64 a[2][2];
void init(int x)
{
clr(a,0);
if(x) a[0][0]=a[1][1]=1;
}
matrix operator*(matrix p)
{
matrix ans;
ans.init(0);
int i,j,k;
FOR0(k,2) FOR0(i,2) FOR0(j,2)
{
ans.a[i][j]+=a[i][k]*p.a[k][j]%(mod-1);
ans.a[i][j]%=(mod-1);
}
return ans;
}
matrix pow(int n)
{
matrix ans,p=*this;
ans.init(1);
while(n)
{
if(n&1) ans=ans*p;
p=p*p;
n>>=1;
}
return ans;
}
};
matrix p;
int a,b,n;
i64 Pow(i64 a,i64 b)
{
i64 ans=1;
while(b)
{
if(b&1) ans=ans*a%mod;
a=a*a%mod;
b>>=1;
}
return ans;
}
int main()
{
p.a[0][0]=p.a[1][0]=p.a[0][1]=1;
p.a[1][1]=0;
Rush(a)
{
RD(b,n);
if(n==0) PR(a);
else if(n==1) PR(b);
else
{
matrix temp=p.pow(n-2);
int x=(temp.a[0][1]+temp.a[1][1])%(mod-1);
int y=(temp.a[0][0]+temp.a[1][0])%(mod-1);
PR(Pow(a,x)*Pow(b,y)%mod);
}
}
}
HDU 4549 M斐波那契数列(矩阵幂)的更多相关文章
- hdu 4549 M斐波那契数列(快速幂 矩阵快速幂 费马小定理)
题目链接http://acm.hdu.edu.cn/showproblem.php?pid=4549: 题目是中文的很容易理解吧.可一开始我把题目看错了,这毛病哈哈. 一开始我看错题时,就用了一个快速 ...
- hdu 4549 M斐波那契数列 矩阵快速幂+欧拉定理
M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others) Problem ...
- [HDU 4549] M斐波那契数列
M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)Total Sub ...
- HDU 4549 M斐波那契数列(矩阵快速幂)
题目链接:M斐波那契数列 题意:$F[0]=a,F[1]=b,F[n]=F[n-1]*F[n-2]$.给定$a,b,n$,求$F[n]$. 题解:暴力打表后发现$ F[n]=a^{fib(n-1)} ...
- HDU 4549 M斐波那契数列(矩阵快速幂+费马小定理)
M斐波那契数列 Time Limit : 3000/1000ms (Java/Other) Memory Limit : 65535/32768K (Java/Other) Total Submi ...
- hdu 4549 M斐波拉契 (矩阵快速幂 + 费马小定理)
Problem DescriptionM斐波那契数列F[n]是一种整数数列,它的定义如下: F[0] = aF[1] = bF[n] = F[n-1] * F[n-2] ( n > 1 ) 现在 ...
- hdu 4549 M斐波那契数列(矩阵高速幂,高速幂降幂)
http://acm.hdu.edu.cn/showproblem.php?pid=4549 f[0] = a^1*b^0%p,f[1] = a^0*b^1%p,f[2] = a^1*b^1%p... ...
- 斐波那契数列 矩阵乘法优化DP
斐波那契数列 矩阵乘法优化DP 求\(f(n) \%1000000007\),\(n\le 10^{18}\) 矩阵乘法:\(i\times k\)的矩阵\(A\)乘\(k\times j\)的矩 ...
- HDU 1316 (斐波那契数列,大数相加,大数比较大小)
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1316 Recall the definition of the Fibonacci numbers: ...
随机推荐
- telnet命令判断端口是否通不通
以上得出结论80端口不通 如果连接成功,想要退出telnet的话,ctrl+],然后输入quit 查看iptables vi /etc/sysconfig/iptables #编辑防火墙配置文件 ...
- .NET基础之:i++和i=i+1和++i的区别
i++ 一定等同于 i=i+1吗? 大家都知道,i++通常情况都是等同于i=i+1,在编译时,clr会自动向上转换 比如说 int t =1; t++; 等同于 t=t+1; //1 是 ...
- win下php5.5.12装不上memcache扩展
WAMP这个集成环境里,php目录下有个php.ini,apache/bin下也有一个php.ini,环境使用的是apache下的,改apache
- 如何在64位的Windows中安裝PLSQLDEVELOPER 8
先到 Oracle 官網下載Oracle Database 11g Release 2 Client (11.2.0.1.0) for Microsoft Windows (x64) ,接者依照以下步 ...
- windows 2008 怎么对外开放端口
服务器已经运行了程序,但是android客户端连接不上, 网上提示说用: start /min telnet 192.168.3.42 2121 查看,但是我的提示tenlet找不到命令,估计是端口的 ...
- hadoop 数据采样
http://www.cnblogs.com/xuxm2007/archive/2012/03/04/2379143.html 原文地址如上: 关于Hadoop中的采样器 .为什么要使用采样器 在这个 ...
- BZOJ 2763: [JLOI2011]飞行路线 spfa dp
题目链接: http://www.lydsy.com/JudgeOnline/problem.php?id=2763 题解: d[x][kk]表示从s到x用了kk次免费机会的最少花费. 代码: #in ...
- ORA-12505, TNS:listener does not currently know of SID given in connect descriptor
引子: 本项目在老电脑上用的是oracle10g,换新电脑装的是oracle11g,但运行项目本没有什么关系,本来说创建个用户,用PLSQL手工导入数据,再改几下配置文件即可跑起来--但实际启动中遇到 ...
- Codeforces Round #362 (Div. 2)->A. Pineapple Incident
A. Pineapple Incident time limit per test 1 second memory limit per test 256 megabytes input standar ...
- [设计模式] 11 享元模式 Flyweight
转 http://blog.csdn.net/wuzhekai1985/article/details/6670298 问题 在面向对象系统的设计何实现中,创建对象是最为常见的操作.这里面就有一个问题 ...