题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4549

题意:F[0]=a,F[1]=b,F[n]=F[n-1]*F[n-2]。

思路:手算一下可以发现,最后F[n]=a^x*b^y,其中x和y是连续的两项Fib。因此只要求出这两个系数x和y即可。注意这里A^x=A^(x%Phi(C)+Phi(C)) (mod C)。因此在求矩阵快速幂时模的数不是mod=1000000007,而是mod-1。

struct matrix
{
    i64 a[2][2];

    void init(int x)
    {
        clr(a,0);
        if(x) a[0][0]=a[1][1]=1;
    }

    matrix operator*(matrix p)
    {
        matrix ans;
        ans.init(0);
        int i,j,k;
        FOR0(k,2) FOR0(i,2) FOR0(j,2)
        {
            ans.a[i][j]+=a[i][k]*p.a[k][j]%(mod-1);
            ans.a[i][j]%=(mod-1);
        }
        return ans;
    }

    matrix pow(int n)
    {
        matrix ans,p=*this;
        ans.init(1);
        while(n)
        {
            if(n&1) ans=ans*p;
            p=p*p;
            n>>=1;
        }
        return ans;
    }
};

matrix p;
int a,b,n;

i64 Pow(i64 a,i64 b)
{
    i64 ans=1;
    while(b)
    {
        if(b&1) ans=ans*a%mod;
        a=a*a%mod;
        b>>=1;
    }
    return ans;
}

int main()
{
    p.a[0][0]=p.a[1][0]=p.a[0][1]=1;
    p.a[1][1]=0;
    Rush(a)
    {
        RD(b,n);
        if(n==0) PR(a);
        else if(n==1) PR(b);
        else
        {
            matrix temp=p.pow(n-2);
            int x=(temp.a[0][1]+temp.a[1][1])%(mod-1);
            int y=(temp.a[0][0]+temp.a[1][0])%(mod-1);
            PR(Pow(a,x)*Pow(b,y)%mod);
        }
    }
}

  

HDU 4549 M斐波那契数列(矩阵幂)的更多相关文章

  1. hdu 4549 M斐波那契数列(快速幂 矩阵快速幂 费马小定理)

    题目链接http://acm.hdu.edu.cn/showproblem.php?pid=4549: 题目是中文的很容易理解吧.可一开始我把题目看错了,这毛病哈哈. 一开始我看错题时,就用了一个快速 ...

  2. hdu 4549 M斐波那契数列 矩阵快速幂+欧拉定理

    M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others) Problem ...

  3. [HDU 4549] M斐波那契数列

    M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Total Sub ...

  4. HDU 4549 M斐波那契数列(矩阵快速幂)

    题目链接:M斐波那契数列 题意:$F[0]=a,F[1]=b,F[n]=F[n-1]*F[n-2]$.给定$a,b,n$,求$F[n]$. 题解:暴力打表后发现$ F[n]=a^{fib(n-1)} ...

  5. HDU 4549 M斐波那契数列(矩阵快速幂+费马小定理)

    M斐波那契数列 Time Limit : 3000/1000ms (Java/Other)   Memory Limit : 65535/32768K (Java/Other) Total Submi ...

  6. hdu 4549 M斐波拉契 (矩阵快速幂 + 费马小定理)

    Problem DescriptionM斐波那契数列F[n]是一种整数数列,它的定义如下: F[0] = aF[1] = bF[n] = F[n-1] * F[n-2] ( n > 1 ) 现在 ...

  7. hdu 4549 M斐波那契数列(矩阵高速幂,高速幂降幂)

    http://acm.hdu.edu.cn/showproblem.php?pid=4549 f[0] = a^1*b^0%p,f[1] = a^0*b^1%p,f[2] = a^1*b^1%p... ...

  8. 斐波那契数列 矩阵乘法优化DP

    斐波那契数列 矩阵乘法优化DP 求\(f(n) \%1000000007​\),\(n\le 10^{18}​\) 矩阵乘法:\(i\times k\)的矩阵\(A\)乘\(k\times j\)的矩 ...

  9. HDU 1316 (斐波那契数列,大数相加,大数比较大小)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1316 Recall the definition of the Fibonacci numbers: ...

随机推荐

  1. C# Socket连接请求超时机制

    作者:RazanPaul 译者:Todd Wei 原文:http://www.codeproject.com/KB/IP/TimeOutSocket.aspx 介绍 您可能注意到了,.Net的Syst ...

  2. 为iOS7重新设计你的App

    在 WWDC 上看到 iOS 7 系统的发布后,我们重新审视了自己的应用 Grocery List,并且意识到:iOS 7 对于开发者来说是一个全新的开始,就像七年前 iPhone 首次发布一样.现在 ...

  3. C# 清楚Cookies

    //销毁Cookies中的数据 if (Request.Cookies["Ticket"] != null) { HttpCookie mycookie; mycookie = R ...

  4. Spring中后台字符串国际化

    1.在工程的资源文件夹(source folder)中建立三个properties文件:messages.properties(默认).messages_zh_CN.properties(中文).me ...

  5. 微软职位内部推荐-Software Development Engineer II

    微软近期Open的职位: Job Title:Software Development EngineerII Division: Server & Tools Business - Comme ...

  6. iOS10 关于推送-b

    最近在研究iOS10关于推送的新特性, 相比之前确实做了很大的改变,总结起来主要是以下几点: 推送内容更加丰富,由之前的alert 到现在的title, subtitle, body 推送统一由tri ...

  7. IIS7.5 HTTP 错误 500.19 - Internal Server Error 问题的解决方案

    昨天在 windows 7 下用 IIS 7.5 运行一个以前用 .NET Framework 3.5 写的项目,发现总是出现 500.19 错误,如下: 百度了好久,没找到解决问题确切的答案,我也知 ...

  8. HTML+CSS入门

    <strong>加粗</strong> <em>斜体</em> <p>段落</p> <span>设置单独样式< ...

  9. BZOJ 1854: [Scoi2010]游戏 无向图判环

    题目链接: 题目 1854: [Scoi2010]游戏 Time Limit: 5 Sec Memory Limit: 162 MB 问题描述 lxhgww最近迷上了一款游戏,在游戏里,他拥有很多的装 ...

  10. 【UOJ】【34】多项式乘法

    快速傅里叶变换模板题 算法理解请看<算法导论>第30章<多项式与快速傅里叶变换>,至于证明插值唯一性什么的看不懂也没关系啦-只要明白这个过程是怎么算的就ok. 递归版:(425 ...