给出四个长度为n的数列a,b,c,d,求从这四个数列中每个选取一个元素后的和为0的方法数。n<=4000,abs(val)<=2^28.

考虑直接暴力,复杂度O(n^4).显然超时。

# include <cstdio>
# include <cstring>
# include <cstdlib>
# include <iostream>
# include <vector>
# include <queue>
# include <stack>
# include <map>
# include <set>
# include <cmath>
# include <algorithm>
using namespace std;
# define lowbit(x) ((x)&(-x))
# define pi acos(-1.0)
# define eps 1e-
# define MOD
# define INF
# define mem(a,b) memset(a,b,sizeof(a))
# define FOR(i,a,n) for(int i=a; i<=n; ++i)
# define FO(i,a,n) for(int i=a; i<n; ++i)
# define bug puts("H");
# define lch p<<,l,mid
# define rch p<<|,mid+,r
# define mp make_pair
# define pb push_back
typedef pair<int,int> PII;
typedef vector<int> VI;
# pragma comment(linker, "/STACK:1024000000,1024000000")
typedef long long LL;
int Scan() {
int res=, flag=;
char ch;
if((ch=getchar())=='-') flag=;
else if(ch>=''&&ch<='') res=ch-'';
while((ch=getchar())>=''&&ch<='') res=res*+(ch-'');
return flag?-res:res;
}
void Out(int a) {
if(a<) {putchar('-'); a=-a;}
if(a>=) Out(a/);
putchar(a%+'');
}
const int N=;
//Code begin... int a[N], b[N], c[N], d[N];
VI vis; int main ()
{
int n;
LL ans=;
n=Scan();
FOR(i,,n) a[i]=Scan(), b[i]=Scan(), c[i]=Scan(), d[i]=Scan();
FOR(i,,n) FOR(j,,n) vis.pb(-c[i]-d[j]);
sort(vis.begin(),vis.end());
FOR(i,,n) FOR(j,,n) {
int temp=a[i]+b[j];
ans+=upper_bound(vis.begin(),vis.end(),temp)-lower_bound(vis.begin(),vis.end(),temp);
}
printf("%lld\n",ans);
return ;
}

枚举a,二分b+c+d.复杂度O(n+n^3*log(n^3)+n*log(n^3))~O(n^3*logn).

枚举a+b,二分b+c.复杂度O(n^2+n^2*log(n^2)+n^2*log(n^2))~O(n^2*logn).

枚举a+b+c,二分d.复杂度O(n^3+logn+n^3*logn)~O(n^3*logn).

另外此题map常数大过不了。

POJ 2785 4 Values whose Sum is 0(折半枚举)的更多相关文章

  1. POJ 2785 4 Values whose Sum is 0(想法题)

    传送门 4 Values whose Sum is 0 Time Limit: 15000MS   Memory Limit: 228000K Total Submissions: 20334   A ...

  2. POJ 2785 4 Values whose Sum is 0

    4 Values whose Sum is 0 Time Limit: 15000MS   Memory Limit: 228000K Total Submissions: 13069   Accep ...

  3. POJ - 2785 4 Values whose Sum is 0 二分

    4 Values whose Sum is 0 Time Limit: 15000MS   Memory Limit: 228000K Total Submissions: 25615   Accep ...

  4. POJ 2785 4 Values whose Sum is 0(折半枚举+二分)

    4 Values whose Sum is 0 Time Limit: 15000MS   Memory Limit: 228000K Total Submissions: 25675   Accep ...

  5. POJ-2785 4 Values whose Sum is 0(折半枚举 sort + 二分)

    题目链接:http://poj.org/problem?id=2785 题意是给你4个数列.要从每个数列中各取一个数,使得四个数的sum为0,求出这样的组合的情况个数. 其中一个数列有多个相同的数字时 ...

  6. POJ 2785 4 Values whose Sum is 0(暴力枚举的优化策略)

    题目链接: https://cn.vjudge.net/problem/POJ-2785 The SUM problem can be formulated as follows: given fou ...

  7. POJ 2785 4 Values whose Sum is 0(哈希表)

    [题目链接] http://poj.org/problem?id=2785 [题目大意] 给出四个数组,从每个数组中选出一个数,使得四个数相加为0,求方案数 [题解] 将a+b存入哈希表,反查-c-d ...

  8. POJ 2785 4 Values whose Sum is 0 Hash!

    http://poj.org/problem?id=2785 题目大意: 给你四个数组a,b,c,d求满足a+b+c+d=0的个数 其中a,b,c,d可能高达2^28 思路: 嗯,没错,和上次的 HD ...

  9. poj 2785 4 Values whose Sum is 0(折半枚举(双向搜索))

    Description The SUM problem can be formulated . In the following, we assume that all lists have the ...

随机推荐

  1. Tips & Tricks Learned Releasing an Hybrid App Using Steroids.js

    http://marcgg.com/blog/2014/04/09/phonegap-steroids-hybrid-native-app-tips/

  2. 北京Uber优步司机奖励政策(12月26日)

    滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...

  3. C#调用大漠插件,发送QQ和微信消息

    大漠插件就不过多介绍了,不知道的请查下百度.主要是讲解C#怎么调用大漠插件. 大漠插件提供了COM版本,C#直接点击引用,添加即可.然后注册下大漠插件到系统文件夹,注册代码如下: static str ...

  4. BBU+RRU基本介绍

    现代移动通信网络中的数模转化架构:RRU+BBU: 因为学习需要了解RRU+BBU.特此网上查找了一番,找到了一些还不错的解释,分享给大家! BBU与RRU的区别: 通常大型建筑物内部的层间有楼板,房 ...

  5. 2019年猪年海报PSD模板-第一部分

    14套精美猪年海报,免费猪年海报,下载地址:百度网盘,https://pan.baidu.com/s/1i7bIzPRTX0OMbHFWnqURWQ                        

  6. Ubuntu目录与权限

    Ubuntu目录 / /bin /sbin /boot /etc /mnt /home d :directory - :file b :block  磁盘以块进行 l :link Ubuntu权限 U ...

  7. 180605-Linux下Crontab实现定时任务

    Linux下Crontab实现定时任务 基于Hexo搭建的个人博客,是一种静态博客页面,每次新增博文或者修改,都需要重新的编译并发布到Github,这样操作就有点蛋疼了,一个想法就自然而然的来了,能不 ...

  8. 推荐:一个适合于Python新手的入门练手项目

    随着人工智能的兴起,国内掀起了一股Python学习热潮,入门级编程语言,大多选择Python,有经验的程序员,也开始学习Python,正所谓是人生苦短,我用Python 有个Python入门练手项目, ...

  9. Django学习总结①

    Django基础环境配置好以后,打开pycharm,创建Django项目 视图views 中需要导入 django.http ---> HttpResponse models库 - 常用方法: ...

  10. LeetCode 95——不同的二叉搜索树 II

    1. 题目 2. 解答 以 \(1, 2, \cdots, n\) 构建二叉搜索树,其中,任意数字都可以作为根节点来构建二叉搜索树.当我们将某一个数字作为根节点后,其左边数据将构建为左子树,右边数据将 ...