http://www.lydsy.com/JudgeOnline/problem.php?id=4870

https://www.luogu.org/problemnew/show/P3746

看网上一群人说“傻逼题”,我感觉我傻逼了。

首先我们把式子转换一下变成求有nk件物品,我取的物品数%k==r的方案数有多少。

显然f[i][j]=f[i-1][j]+f[i-1][j-1]。

但就没人教一下f[i][j]=f[i-1][j]+f[i-1][j-1]如何矩乘吗……

那我就引洛谷的题解了:

可以加速的原理,其实就是杨辉三角是一个一维递推,并且可以将递推描述为:复制矩阵到一个新矩阵,然后矩阵右移一格,加到新矩阵中。

#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
ll n,p,K,r;
struct node{
ll g[][];
node(){
memset(g,,sizeof(g));
}
friend node operator *(const node &x,const node &y){
node z;
for(int i=;i<K;i++)
for(int j=;j<K;j++)
for(int k=;k<K;k++)
z.g[i][k]=(z.g[i][k]+x.g[i][j]*y.g[j][k]%p)%p;
return z;
}
}f,t,res;
int main(){
cin>>n>>p>>K>>r;
t.g[][]=;
for(int i=;i<K;i++){
f.g[(i-+K)%K][i]++;
f.g[i][i]++;
res.g[i][i]=;
}
n*=K;
while(n){
if(n&)res=res*f;
f=f*f;n>>=;
}
printf("%lld\n",(t*res).g[][r]);
return ;
}

+++++++++++++++++++++++++++++++++++++++++++

+本文作者:luyouqi233。               +

+欢迎访问我的博客:http://www.cnblogs.com/luyouqi233/+

+++++++++++++++++++++++++++++++++++++++++++

BZOJ4870:[SHOI2017]组合数问题——题解的更多相关文章

  1. [BZOJ4870][Shoi2017]组合数问题 dp+矩阵乘

    4870: [Shoi2017]组合数问题 Time Limit: 10 Sec  Memory Limit: 512 MB Description Input 第一行有四个整数 n, p, k, r ...

  2. BZOJ4870: [Shoi2017]组合数问题

    4870: [Shoi2017]组合数问题 Description Input 第一行有四个整数 n, p, k, r,所有整数含义见问题描述. 1 ≤ n ≤ 10^9, 0 ≤ r < k ...

  3. BZOJ4870 [Shoi2017]组合数问题 【组合数 + 矩乘】

    题目链接 BZOJ4870 题解 \[ans = \sum\limits_{i = 0}^{\infty}{nk \choose ik + r} \pmod p\] 发现实际是求 \[ans = \s ...

  4. BZOJ4870:[SHOI2017]组合数问题(组合数学,矩阵乘法)

    Description Input 第一行有四个整数 n, p, k, r,所有整数含义见问题描述. 1 ≤ n ≤ 10^9, 0 ≤ r < k ≤ 50, 2 ≤ p ≤ 2^30 − 1 ...

  5. bzoj4870: [Shoi2017]组合数问题(DP+矩阵乘法优化)

    为了1A我居然写了个暴力对拍... 那个式子本质上是求nk个数里选j个数,且j%k==r的方案数. 所以把组合数的递推式写出来f[i][j]=f[i-1][j]+f[i-1][(j-1+k)%k].. ...

  6. 【BZOJ4870】[Shoi2017]组合数问题 动态规划(矩阵乘法)

    [BZOJ4870][Shoi2017]组合数问题 Description Input 第一行有四个整数 n, p, k, r,所有整数含义见问题描述. 1 ≤ n ≤ 10^9, 0 ≤ r < ...

  7. bzoj 4870: [Shoi2017]组合数问题 [矩阵乘法优化dp]

    4870: [Shoi2017]组合数问题 题意:求 \[ \sum_{i=0}^{n-1} \binom{nk}{ik+r} \mod p \] \(n \le 10^9, 0\le r < ...

  8. 【BZOJ4870】组合数问题(动态规划,矩阵快速幂)

    [BZOJ4870]组合数问题(动态规划,矩阵快速幂) 题面 BZOJ 洛谷 题解 显然直接算是没法做的.但是要求的东西的和就是从\(nk\)个物品中选出模\(k\)意义下恰好\(r\)个物品的方案数 ...

  9. BZOJ_4870_[Shoi2017]组合数问题_矩阵乘法

    BZOJ_4870_[Shoi2017]组合数问题_矩阵乘法 Description Input 第一行有四个整数 n, p, k, r,所有整数含义见问题描述. 1 ≤ n ≤ 10^9, 0 ≤ ...

随机推荐

  1. 一个CookieContainer的拓展类

    最近项目中需要频繁用到服务器返回的Cookie,由于项目采用的是HttpClient,并且用CookieContainer自动托管Cookie,在获取Cookie的时候不太方便.所以就写了个拓展类. ...

  2. android学习十 ActionBar

    1.api level大于等于11 支持,或者使用兼容库,但兼容库的问题很多. 2.一个操作栏属于一个活动,并具有其生命周期 3.操作栏分3类:a.选项卡操作栏,b.列表操作栏,c.标准操作栏 4.获 ...

  3. Python对象引用问题总结

    对于对象引用问题,一直是一知半解的状态,现整理以备使用. 操作不可变对象进行加减运算时,会在内存中创建新的不可变实例,不会影响原来的引用>>> c=12>>> d= ...

  4. Unity编辑器 - 自动排版

    Unity编辑器 - 自动排版 使用花括号提高可读性 //一组横向排列的控件 GUILayout.BeginHorizontal(); { GUILayout.BeginVertical(); { / ...

  5. MVC数据的注册及验证简单总结

    一.注解 注解是一种通用机制,可以用来向框架注入元数据,同时,框架不只驱动元数据的验证,还可以在生成显示和编辑模型的HTML标记时使用元数据. 二.验证注册的使用 1.Require:属性为Null或 ...

  6. Siki_Unity_2-1_API常用方法和类详细讲解(下)

    Unity 2-1 API常用方法和类详细讲解(下) 任务101&102:射线检测 射线origin + direction:射线检测:射线是否碰撞到物体 (物体需要有碰撞器),碰撞物体的信息 ...

  7. LeetCode 142——环形链表 II

    1. 题目 2. 解答 2.1 方法 1 定义快慢两个指针,慢指针每次前进一步,快指针每次前进两步,若链表有环,则快慢指针一定会相遇. 当快慢指针相遇时,我们让慢指针指向头节点,快指针不变,然后每次快 ...

  8. Linux内核设计笔记13——虚拟文件系统

    虚拟文件系统 内核在它的底层文件系统系统接口上建立一个抽象层,该抽象层使Linux可以支持各种文件系统,即便他们在功能和行为上存在很大差异. VFS抽象层定义了各个文件系统都支持的基本的.概念上的接口 ...

  9. “Hello world!”团队第三周贡献分规则

    一.贡献规则制定: (1)基础分:9 , 9 , 8 , 7 , 7 , 7 , 6(按在本次编程中承担模块的重要度制定,某一模块重要度的认定通过组内开会讨论决定) (2)会议分:每人没出勤一次会议记 ...

  10. “Hello World!”团队第三周召开的第五次会议

    一.会议时间 二.会议地点 三.会议成员 四.会议内容 五.todo list 六.会议照片 七.燃尽图 八.代码地址 一.会议时间 2017年10月31日  11:45-12:17 二.会议地点: ...