BZOJ4870:[SHOI2017]组合数问题——题解
http://www.lydsy.com/JudgeOnline/problem.php?id=4870
https://www.luogu.org/problemnew/show/P3746
看网上一群人说“傻逼题”,我感觉我傻逼了。
首先我们把式子转换一下变成求有nk件物品,我取的物品数%k==r的方案数有多少。
显然f[i][j]=f[i-1][j]+f[i-1][j-1]。
但就没人教一下f[i][j]=f[i-1][j]+f[i-1][j-1]如何矩乘吗……
那我就引洛谷的题解了:
可以加速的原理,其实就是杨辉三角是一个一维递推,并且可以将递推描述为:复制矩阵到一个新矩阵,然后矩阵右移一格,加到新矩阵中。
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
ll n,p,K,r;
struct node{
ll g[][];
node(){
memset(g,,sizeof(g));
}
friend node operator *(const node &x,const node &y){
node z;
for(int i=;i<K;i++)
for(int j=;j<K;j++)
for(int k=;k<K;k++)
z.g[i][k]=(z.g[i][k]+x.g[i][j]*y.g[j][k]%p)%p;
return z;
}
}f,t,res;
int main(){
cin>>n>>p>>K>>r;
t.g[][]=;
for(int i=;i<K;i++){
f.g[(i-+K)%K][i]++;
f.g[i][i]++;
res.g[i][i]=;
}
n*=K;
while(n){
if(n&)res=res*f;
f=f*f;n>>=;
}
printf("%lld\n",(t*res).g[][r]);
return ;
}
+++++++++++++++++++++++++++++++++++++++++++
+本文作者:luyouqi233。 +
+欢迎访问我的博客:http://www.cnblogs.com/luyouqi233/+
+++++++++++++++++++++++++++++++++++++++++++
BZOJ4870:[SHOI2017]组合数问题——题解的更多相关文章
- [BZOJ4870][Shoi2017]组合数问题 dp+矩阵乘
4870: [Shoi2017]组合数问题 Time Limit: 10 Sec Memory Limit: 512 MB Description Input 第一行有四个整数 n, p, k, r ...
- BZOJ4870: [Shoi2017]组合数问题
4870: [Shoi2017]组合数问题 Description Input 第一行有四个整数 n, p, k, r,所有整数含义见问题描述. 1 ≤ n ≤ 10^9, 0 ≤ r < k ...
- BZOJ4870 [Shoi2017]组合数问题 【组合数 + 矩乘】
题目链接 BZOJ4870 题解 \[ans = \sum\limits_{i = 0}^{\infty}{nk \choose ik + r} \pmod p\] 发现实际是求 \[ans = \s ...
- BZOJ4870:[SHOI2017]组合数问题(组合数学,矩阵乘法)
Description Input 第一行有四个整数 n, p, k, r,所有整数含义见问题描述. 1 ≤ n ≤ 10^9, 0 ≤ r < k ≤ 50, 2 ≤ p ≤ 2^30 − 1 ...
- bzoj4870: [Shoi2017]组合数问题(DP+矩阵乘法优化)
为了1A我居然写了个暴力对拍... 那个式子本质上是求nk个数里选j个数,且j%k==r的方案数. 所以把组合数的递推式写出来f[i][j]=f[i-1][j]+f[i-1][(j-1+k)%k].. ...
- 【BZOJ4870】[Shoi2017]组合数问题 动态规划(矩阵乘法)
[BZOJ4870][Shoi2017]组合数问题 Description Input 第一行有四个整数 n, p, k, r,所有整数含义见问题描述. 1 ≤ n ≤ 10^9, 0 ≤ r < ...
- bzoj 4870: [Shoi2017]组合数问题 [矩阵乘法优化dp]
4870: [Shoi2017]组合数问题 题意:求 \[ \sum_{i=0}^{n-1} \binom{nk}{ik+r} \mod p \] \(n \le 10^9, 0\le r < ...
- 【BZOJ4870】组合数问题(动态规划,矩阵快速幂)
[BZOJ4870]组合数问题(动态规划,矩阵快速幂) 题面 BZOJ 洛谷 题解 显然直接算是没法做的.但是要求的东西的和就是从\(nk\)个物品中选出模\(k\)意义下恰好\(r\)个物品的方案数 ...
- BZOJ_4870_[Shoi2017]组合数问题_矩阵乘法
BZOJ_4870_[Shoi2017]组合数问题_矩阵乘法 Description Input 第一行有四个整数 n, p, k, r,所有整数含义见问题描述. 1 ≤ n ≤ 10^9, 0 ≤ ...
随机推荐
- Myeclipse - 问题集 - specified vm install not found
In Eclipse, click the ant file -- Run As -- External Tools Configuration and click on the JRE tab. S ...
- SpringBoot入门(一)——开箱即用
本文来自网易云社区 Spring Boot是什么 从根本上来讲Spring Boot就是一些库的集合,是一个基于"约定优于配置"的原则,快速搭建应用的框架.本质上依然Spring, ...
- ubuntu 14.04 lts LAMP配置
一.目标 创建服务器环境,主要包括:Apache2.4.7 serverPHP 5.5.9Mysql 5.5.49扩展:MemcacheMcrypt 二.准备工作 1.服务器系统版本 Ubuntu s ...
- Selenium 入门到精通系列:一
Selenium 入门到精通系列 PS:控制浏览器窗口大小.前进.后退.刷新 例子 #!/usr/bin/env python # -*- coding: utf-8 -*- # @Date : 20 ...
- python 终极篇 --- django 视图系统
Django的View(视图) 一个视图函数(类),简称视图,是一个简单的Python 函数(类),它接受Web请求并且返回Web响应. 响应可以是一张网页的HTML内容,一个重定向,一个404错误, ...
- 使用手机登录OWA修改密码的问题
最近发现使用手机端登录OWA,安卓手机是可以修改密码的,如图1,但是iPhone就不成,safari和第三方都不可以,如图二. 图一 图二
- java利用POI实现读取Word并获取指定样式的文本
import org.apache.poi.hwpf.HWPFDocument; import org.apache.poi.hwpf.model.StyleDescription; import o ...
- 软件工程课堂作业(二)续——升级完整版随机产生四则运算题目(C++)
一.设计思想: 1.根据题目新设要求,我将它们分为两类:一类是用户输入数目,根据这个数目改变一系列后续问题:另一类是用户输入0或1,分情况解决问题. 2.针对这两类要求,具体设计思路已在上篇博文中写出 ...
- @ModelAttribute使用详解
1.@ModelAttribute注释方法 例子(1),(2),(3)类似,被@ModelAttribute注释的方法会在此controller每个方法执行前被执行,因此对于一个control ...
- 【Redis】- 延时任务
引言 在开发中,往往会遇到一些关于延时任务的需求.例如 生成订单30分钟未支付,则自动取消 生成订单60秒后,给用户发短信 对上述的任务,我们给一个专业的名字来形容,那就是延时任务.那么这里就会产生一 ...
