P2257 YY的GCD

题目描述

神犇YY虐完数论后给傻×kAc出了一题

给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对

kAc这种傻×必然不会了,于是向你来请教……

多组输入

输入输出格式

输入格式:

第一行一个整数T 表述数据组数

接下来T行,每行两个正整数,表示N, M

输出格式:

T行,每行一个整数表示第i组数据的结果

输入输出样例

输入样例#1: 复制

2
10 10
100 100
输出样例#1: 复制

30
2791

说明

T = 10000

N, M <= 10000000

思路:倍数莫比乌斯反演。

(太长时间没写字了。。

代码:

 #include<bits/stdc++.h>
#define ll long long
using namespace std;
const int N = 1e7 + ;
int t;
//线性筛法求莫比乌斯函数
bool vis[N + ];
int pri[N + ];
int mu[N + ];
ll sum[N];
int f[N];
void mus() {
memset(vis, , sizeof(vis));
memset(f,, sizeof(f));//f[n]=sum(mu[n/p])
mu[] = ;
int tot = ;
for (int i = ; i < N; i++) {
if (!vis[i]) {
pri[tot++] = i;
mu[i] = -;
}
for (int j = ; j < tot && i * pri[j] < N; j++) {
vis[i * pri[j]] = ;
if (i % pri[j] == ) {
mu[i * pri[j]] = ;
break;
}
else mu[i * pri[j]] = -mu[i];
}
}
for(int i=;i<N;i++)
for(int j=;j<tot&&pri[j]*i<N;j++) f[i*pri[j]]+=mu[i];//需要重复更新,不能放在线性筛内部
sum[]=;
for(int i=;i<N;i++) sum[i]=sum[i-]+f[i];
}
int n,m,k;
ll cal(int x,int y){
int ma=min(x,y);
ll res=;
for(int i=,j;i<=ma;i=j+){
j=min(x/(x/i),y/(y/i));
if(j>=ma) j=ma;
res+=1ll*(sum[j]-sum[i-])*(x/i)*(y/i);
}
return res;
} int main() {
mus();
scanf("%d",&t);
for(int i=;i<=t;i++){
scanf("%d%d",&n,&m);
ll ans;
ans=cal(n,m);
printf("%lld\n",ans);
}
return ;
}

P2257 YY的GCD的更多相关文章

  1. 洛谷 P2257 YY的GCD

    洛谷 P2257 YY的GCD \(solution:\) 这道题完全跟[POI2007]ZAP-Queries (莫比乌斯反演+整除分块) 用的一个套路. 我们可以列出答案就是要我们求: \(ans ...

  2. [Luogu P2257] YY的GCD (莫比乌斯函数)

    题面 传送门:洛咕 Solution 推到自闭,我好菜啊 显然,这题让我们求: \(\large \sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j)\in prime]\) 根 ...

  3. 题解 P2257 YY的GCD

    P2257 YY的GCD 解题思路 果然数论的题是真心不好搞. 第一个莫比乌斯反演的题,好好推一下式子吧..(借鉴了blog) 我们要求的答案就是\(Ans=\sum\limits_{i=1}^{n} ...

  4. P2257 YY的GCD (莫比乌斯反演)

    [题目链接] https://www.luogu.org/problemnew/show/P2257 // luogu-judger-enable-o2 /* -------------------- ...

  5. 洛谷 - P2257 - YY的GCD - 莫比乌斯反演 - 整除分块

    https://www.luogu.org/problemnew/show/P2257 求 \(n,m\) 中 \(gcd(i,j)==p\) 的数对的个数 求 $\sum\limits_p \sum ...

  6. 洛谷 P2257 YY的GCD 题解

    原题链接 庆祝: 数论紫题 \(T4\) 达成! 莫比乌斯 \(T1\) 达成! yy 真是个 神犇 前记 之前我觉得: 推式子,直接欧拉筛,筛出个 \(\phi\),然后乱推 \(\gcd\) 就行 ...

  7. 洛谷 P2257 - YY的GCD(莫比乌斯反演+整除分块)

    题面传送门 题意: 求满足 \(1 \leq x \leq n\),\(1 \leq y \leq m\),\(\gcd(x,y)\) 为质数的数对 \((x,y)\) 的个数. \(T\) 组询问. ...

  8. 洛谷P2257 YY的GCD 莫比乌斯反演

    原题链接 差不多算自己推出来的第一道题QwQ 题目大意 \(T\)组询问,每次问你\(1\leqslant x\leqslant N\),\(1\leqslant y\leqslant M\)中有多少 ...

  9. Luogu P2257 YY的GCD

    莫比乌斯反演第一题.莫比乌斯反演入门 数论题不多BB,直接推导吧. 首先,发现题目所求\(ans=\sum_{i=1}^n\sum_{j=1}^m [\gcd(i,j)=prime]\) 考虑反演,我 ...

随机推荐

  1. mongodb 启动

    >mongod.exe --dbpath  C:\Environ\mongodb-3.0.6\data\db >mongod.exe --logpath "C:\Environ\ ...

  2. console和windows子系统

    https://blog.csdn.net/ilvu999/article/details/8050292

  3. openAI最近推出了一个新的语言模型 "GPT-2"

    [转]openAI最近推出了一个新的语言模型 "GPT-2",由于效果太好(?)几乎可以以假乱真,所以openAI正在犹豫是否把这个project完整release出来.(于是有人 ...

  4. hashcode方法 简析

    package com.ycgwl; import java.util.HashMap; class People{ private String name; private int age; pub ...

  5. vs中ctrl+w选中智能感应的整个单词

    vs中ctrl+w选中智能感应的整个单词

  6. 百度地图label样式修正

    现象:百度地图 label 宽度为0,文字在标签边框外. 原因:样式冲突,在css中添加下列代码即可: .BMapLabel{ max-width:none; }

  7. 阅读MySQL文档第20章:存储程序和函数

    本文把阅读到的重点摘抄下来. 一.一个子程序要么是一个程序要么是一个函数.使用CALL语句来调用程序,程序只能用输出变量传回值.就像别其它函数调用一样,函数可以被从语句外调用(即通过引用函数名),函数 ...

  8. 网易mumu模拟器配置文件和修改adb port位置

    网易mumu模拟器配置文件在安装目录下 emulator\nemu\vms\myandrovm_vbox86下的myandrovm_vbox86.nemu文件中 修改port位置

  9. PHP------Jquery的用法

    Jquery Jquery实际上相当于一个升级版的JS,Jquery里面封装了很多的东西,Jquery的功能要比JS强大,用起来比JS方便.Jquery和JS都属于JS,只不过Jquery是封装了一个 ...

  10. 1.spring:helloword/注入/CDATA使用/其他Bean/null&级联/p命名空间

    新建工程,导入jar,添加spring配置文件(配置文件xxxx.xml)! 1.Helloword实现 Helloword.java public class HelloWord { private ...