【强连通分量缩点】【DFS】【动态规划】Urozero Autumn Training Camp 2016 Day 5: NWERC-2016 Problem B. British Menu
有向图,不经过重复点的最长链,强连通分量大小不超过5。
每个强连通分量内部暴力预处理任意两对点之间的最长路,外面DAG上dp。
不是很好写,但是预处理完了之后,可以重构每个强连通分量内部的结构,然后整个就变成一张DAG了,就很方便了。
#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <vector>
#define MAX_V 200005
using namespace std;
int n,ans,ans1[MAX_V],ans2[MAX_V],c[MAX_V][6],cnum[MAX_V],id[MAX_V],dis[MAX_V][6],m;
vector<int> G[MAX_V];
vector<int> rG[MAX_V];
vector<int> vs;
bool used[MAX_V];
int cmp[MAX_V];
void add_edge(int from,int to)
{
G[from].push_back(to);
rG[to].push_back(from);
}
void dfs(int v)
{
used[v]=1;
for(int i=0;i<G[v].size();++i)
{
if(!used[G[v][i]])
dfs(G[v][i]);
}
vs.push_back(v);
}
void rdfs(int v,int k)
{
used[v]=1;
cmp[v]=k;
for(int i=0;i<rG[v].size();++i)
{
if(!used[rG[v][i]])
rdfs(rG[v][i],k);
}
}
int scc()
{
memset(used,0,sizeof used);
vs.clear();
for(int v=1;v<=n;v++)
{
if(!used[v]) dfs(v);
}
memset(used,0,sizeof used);
int k=1;
for(int i=vs.size()-1;i>=0;--i)
{
if(!used[vs[i]])
rdfs(vs[i],k++);
}
return k;
}
void cal(int now,int nowid,int f,int nowdis)
{
used[now]=1;
dis[now][nowid]=max(dis[now][nowid],nowdis);
for(int i=0;i<G[now].size();++i)
if(cmp[G[now][i]]==f&&!used[G[now][i]])
{
cal(G[now][i],nowid,f,nowdis+1);
}
used[now]=0;
return;
}
int get2(int now);
int get1(int now)
{
if(ans1[now]!=-1) return ans1[now];
int nowans=1;
for(int i=0;i<rG[now].size();i++)
if(cmp[rG[now][i]]!=cmp[now])
{
nowans=max(nowans,get2(rG[now][i])+1);
}
return ans1[now]=nowans;
}
int get2(int now)
{
if(ans2[now]!=-1) return ans2[now];
int nowans=-1;
for(int i=1;i<=cnum[cmp[now]];++i)
{
nowans=max(nowans,get1(c[cmp[now]][i])+dis[now][i]);
}
return ans2[now]=nowans;
}
int main()
{
scanf("%d%d",&n,&m);
int u,v;
for(int i=1;i<=m;++i)
{
scanf("%d%d",&u,&v);
add_edge(u,v);
}
scc();
memset(used,0,sizeof used);
for(int i=1;i<=n;++i)
{
ans1[i]=ans2[i]=-1;
c[cmp[i]][++cnum[cmp[i]]]=i;
id[i]=cnum[cmp[i]];
cal(i,id[i],cmp[i],0);
}
for(int i=1;i<=n;++i)
{
ans=max(ans,get2(i));
}
cout<<ans;
return 0;
}
【强连通分量缩点】【DFS】【动态规划】Urozero Autumn Training Camp 2016 Day 5: NWERC-2016 Problem B. British Menu的更多相关文章
- uva 11324 The Largest Clique(强连通分量缩点+DAG动态规划)
http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=25&page=sh ...
- [SDOI2012]走迷宫 (强连通分量缩点,动态规划,高斯消元)
题面 Morenan被困在了一个迷宫里.迷宫可以视为N个点M条边的有向图,其中Morenan处于起点S,迷宫的终点设为T.可惜的是,Morenan非常的脑小,他只会从一个点出发随机沿着一条从该点出发的 ...
- 【计算几何】【预处理】【枚举】Urozero Autumn Training Camp 2016 Day 5: NWERC-2016 Problem K. Kiwi Trees
发现由于角的度数和边的长度有限制,那俩圆如果放得下的话,必然是塞在两个角里. 于是预处理n个圆心的位置(注意要判断那个圆会不会和其他的边界相交),然后n^2枚举俩角即可. #include<cs ...
- 【枚举】【SPFA】Urozero Autumn Training Camp 2016 Day 5: NWERC-2016 Problem I. Iron and Coal
那个人派出的队伍的行走的路径一定前半程是重合的,后半程分叉开来. 于是预处理每个点离1号点的最短路,到最近的铁的最短路,到最近的煤的最短路.(三次BFS / SPFA)然后枚举分岔点,尝试更新答案即可 ...
- 【二分】Urozero Autumn Training Camp 2016 Day 5: NWERC-2016 Problem C. Careful Ascent
二分Vx即可. #include<cstdio> #include<algorithm> using namespace std; #define EPS 0.00000000 ...
- POJ1236Network of Schools[强连通分量|缩点]
Network of Schools Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 16571 Accepted: 65 ...
- HD2767Proving Equivalences(有向图强连通分量+缩点)
题目链接 题意:有n个节点的图,现在给出了m个边,问最小加多少边是的图是强连通的 分析:首先找到强连通分量,然后把每一个强连通分量缩成一个点,然后就得到了一个DAG.接下来,设有a个节点(每个节点对应 ...
- UVa11324 The Largest Clique(强连通分量+缩点+记忆化搜索)
题目给一张有向图G,要在其传递闭包T(G)上删除若干点,使得留下来的所有点具有单连通性,问最多能留下几个点. 其实这道题在T(G)上的连通性等同于在G上的连通性,所以考虑G就行了. 那么问题就简单了, ...
- ZOJ3795 Grouping(强连通分量+缩点+记忆化搜索)
题目给一张有向图,要把点分组,问最少要几个组使得同组内的任意两点不连通. 首先考虑找出强连通分量缩点后形成DAG,强连通分量内的点肯定各自一组,两个强连通分量的拓扑序能确定的也得各自一组. 能在同一组 ...
随机推荐
- 【HNOI】 期望面积
[题目描述]给定n个点,求这n个点组成凸包的期望面积.保证任意三点不共线. [数据范围]n<=100. 首先我们知道凸包面积的计算为所有在凸包上相邻的点的叉积和,那么我们可以枚举两个点,然后求出 ...
- Vue 定义组件模板的七种方式(一般用单文件组件更好)
在 Vue 中定义一个组件模板,至少有七种不同的方式(或许还有其它我不知道的方式): 字符串 模板字面量 x-template 内联模板 render 函数 JSF 单文件组件 在这篇文章中,我将通过 ...
- 网络设备之net_device结构与操作
net_device结构是一个很大的结构,其中包含了硬件信息,接口信息,其他辅助信息,以及设备操作函数等: 目前仍在读代码中,后续字段注释会逐渐补充: /** * struct net_device ...
- 2017多校第7场 HDU 6127 Hard challenge 极角排序,双指针
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6127 题意:平面直角坐标系上有n个整点,第i个点有一个点权val,坐标为(xi,yi),其中不存在任 ...
- C高级 框架开发中红黑树结构
引言 -- 红黑树历史 红黑树是数据结构学习中一道卡. 底层库容器中必不可少的算法. 历经各种实战运用,性能有保障. 同样红黑树不好理解, 就算理解了, 代码也不好写. 就算写了, 工程库也难构建. ...
- 设计模式之笔记--工厂方法模式(Factory Method)
工厂方法模式(Factory Method) 定义 工厂方法模式(Factory Method),定义一个用于创建对象的接口,让子类决定实例化哪一个类.工厂方法使一个类的实例化延迟到其子类. 类图 描 ...
- 对list对象进行排序
List<LjlSevOrdersVO> list = ljlSevOrdersService.findSevForOrders(ljlSevOrdersVO); //查出所有是自愿者的订 ...
- FineReport——表单设计
在单元格的数据设置这一选项中,有分组,列表,汇总三个选项.分组显示,即将相同的项合并,列表则将每一行的数据逐一的展示,不会合并相同的值,每一行的是完整的一条记录,而汇总则是将数字型数据进行汇总. 分组 ...
- MYSQL中INET_ATON()函数
例如我们现在要在一个表中查出 ip 在 192.168.1.3 到 192.168.1.20 之间的 ip 地址,我们首先想到的就是通过字符串的比较来获取查找结果,但是如果我们通过这种方式来查找,结果 ...
- 安装Hadoop2.7和hive2.0以及redis
安装过程很简单,主要记录期间碰到的问题: 安装过程: 下载安装包: hadoop:http://mirrors.hust.edu.cn/apache/hadoop/common/hadoop-2.7. ...