洛谷P1667 数列

题目描述

给定一个长度是n的数列A,我们称一个数列是完美的,当且仅当对于其任意连续子序列的和都是正的。现在你有一个操作可以改变数列,选择一个区间[X,Y]满足\(A_X +A_{X+1} +…+ A_Y<0,1<X<=Y<n,\)令\(S=A_X +A_{X+1} +…+ A_Y\),对于\(A_{X-1}\)和\(A_{Y+1}\)分别加上S,\(A_X\)和\(A_Y\)分别减去S(如果X=Y就减两次)。问最少几次这样的操作使得最终数列是完美的。

输入输出格式

输入格式:

第一行一个数n,以下n个数。

【数据规模】

对于20%的数据,满足1≤N≤5;

对于100%的数据,满足\(1≤N≤10^5; 1≤|A[i]|≤2^31-1.\)

输出格式:

一个数表示最少的操作次数,如果无解输出-1。

输入输出样例

输入样例#1:

5

13

-3

-4

-5

62

输出样例#1:

2

说明

【样例解释】

首先选择区间[2,4],之后数列变成1,9,-4,7,50,然后选择[3,3],数列变成1,5,4,3,50

Solution

按照题目意思,我们令\(T=sum[r]-sum[l-1]\),其中sum为a的前缀和

那么会有a[l-1]+=T,a[r+1]+=T,a[l]-=T,a[r]-=T,实际上对于sum[l]和sum[r+1]是没有变化的,而sum[l-1]会增加T,sum[r]会减少T,实际上就是sum[l-1]和sum[r]交换了位置

由于题目要求任意\(a_i\)均为正数,所以前缀和必须严格上升,那么很容易看出\(sum_i<=0\)或者是\(i<j\)并且\(sum_i=sum_j\)无解

正常情况下,我们要求交换次数,把前缀和离散后,它是第几小就该到哪去,所以就是模拟交换并统计次数就可以了

Code

#include<bits/stdc++.h>
#define rg register
#define il inline
#define Min(a,b) ((a)<(b)?(a):(b))
#define Max(a,b) ((a)>(b)?(a):(b))
#define lol long long
#define in(i) (i=read())
using namespace std; const lol N=2e5+10; lol read() {
lol ans=0,f=1; char i=getchar();
while(i<'0' || i>'9') {if(i=='-') f=-1; i=getchar();}
while(i>='0' && i<='9') ans=(ans<<1)+(ans<<3)+i-'0',i=getchar();
return ans*=f;
} lol n,sum[N],id[N],AQ[N]; bool cmp(lol a,lol b) {return sum[a]<sum[b];} int main()
{
//freopen("bsum.in","r",stdin);
//freopen("bsum.out","w",stdout);
in(n);
for(lol i=1;i<=n;i++) {
in(sum[i]),id[i]=i;
sum[i]+=sum[i-1],AQ[i]=sum[i];
}
sort(AQ+1,AQ+1+n);
for(lol i=1;i<n;i++) {
if(AQ[1]<=0 || AQ[i]==AQ[i+1])
cout<<-1<<endl,exit(0);
}
sort(id+1,id+1+n,cmp);
for(lol i=1;i<=n;i++) sum[id[i]]=i;
lol ans=n;
for(lol i=1;i<=n;i++) {
if(sum[i]==i) ans--;
else {
swap(id[i],id[sum[i]]);
swap(sum[i],sum[id[sum[i]]]);
}
}cout<<ans<<endl;
}

洛谷P1667/[10.22 模拟赛] 数列 (思维+模拟)的更多相关文章

  1. 洛谷P1962 斐波那契数列【矩阵运算】

    洛谷P1962 斐波那契数列[矩阵运算] 题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) ( ...

  2. 【洛谷 P1667】 数列 (贪心)

    题目链接 对于一个区间\([x,y]\),设这个区间的总和为\(S\) 那么我们在前缀和(设为\(sum[i]\))的意义上考虑到原操作其实就是\(sum[x−1]+=S\) , \(sum[x]+S ...

  3. 洛谷P1962 斐波那契数列 || P1349 广义斐波那契数列[矩阵乘法]

    P1962 斐波那契数列 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数 ...

  4. 洛谷 P4108 / loj 2119 [HEOI2015] 公约数数列 题解【分块】

    看样子分块题应该做的还不够. 题目描述 设计一个数据结构. 给定一个正整数数列 \(a_0, a_1, \ldots , a_{n-1}\),你需要支持以下两种操作: MODIFY id x: 将 \ ...

  5. [洛谷P2174]小Z的神奇数列

    题目大意:有$n(n\leqslant10^6)$个数,$5$种操作: $D\;x:$从数列中删除$x$,相同的数只删除一个 $B:$最大值 $S:$最小值 $M:$输出$max^{min}\pmod ...

  6. 洛谷——P1962 斐波那契数列

    P1962 斐波那契数列 题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 ...

  7. NOIP模拟赛 数列

    Problem 2 数列(seq.cpp/c/pas) [题目描述] a[1]=a[2]=a[3]=1 a[x]=a[x-3]+a[x-1]  (x>3) 求a数列的第n项对1000000007 ...

  8. 洛谷—— P1962 斐波那契数列

    https://www.luogu.org/problem/show?pid=1962 题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f ...

  9. 洛谷P1962 斐波那契数列(矩阵快速幂)

    题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数) 题目描述 请 ...

随机推荐

  1. spark dataset join 使用方法java

    dataset<Row> df1,df2,df3 //该方法可以执行成功 df3= df1.join(df2,"post_id").selectExpr("h ...

  2. Pandas基础教程

    pandas教程 更多地可以 参考教程 安装 pip install pandas pandas的类excel操作,超级方便: import pandas as pd dates = pd.date_ ...

  3. HashMap 阅读

    最近研究了一下java中比较常见的map类型,主要有HashMap,HashTable,LinkedHashMap和concurrentHashMap.这几种map有各自的特性和适用场景.使用方法的话 ...

  4. UVa 1225 - Digit Counting - ACM/ICPC Danang 2007 解题报告 - C语言

    1.题目大意 把前n$(n\le 10000)$个整数顺次写在一起:12345678910111213……计算0~9各出现了多少次. 2.思路 第一想法是打表,然而觉得稍微有点暴力.不过暂时没有想到更 ...

  5. Icingaweb2监控oracle数据库的安装配置流程

    Icinga2安装配置check_oracle_health流程 1.安装 由于check_oracle_health是使用perl语言编写的,因此在安装该插件之前,首先要安装oracle的客户端实例 ...

  6. 20145214实验一 Java开发环境的熟悉

    20145214实验一 Java开发环境的熟悉 使用JDK编译.运行简单的java程序 命令行下程序开发 在命令行下建立20145214实验目录,进入该目录后创建exp1目录. 把代码保存到exp1目 ...

  7. 活学活用wxPython

    http://www.czug.org/python/wxpythoninaction/

  8. LoadRunner中执行命令行

    在LoadRunner可以使用函数system()来调用系统指令,结果同在批处理里执行一样,但是system()有个缺陷:无法获取命令的返回结果. 也许可以用`echo command > fi ...

  9. 【Linux】- CentOS安装Mysql 5.7

    CentOS7默认数据库是mariadb,而不是mysql.CentOS7的yum源中默认是没有mysql的.所以不能使用yum install直接安装. 下载mysql的repo源 cd /usr/ ...

  10. SonarQube安装

    要求 至少1G以上内存,推荐为2G Java:Oracle JRE 7u75+,OpenJDK 7u75+ 数据库: Microsoft SQL Server 2008/2012/2014 MySQL ...