Deep Learning Demo of Primary

下面介绍一个入门案例,如何使用TensorFlow和Keras构建一个CNN模型进行手写数字识别,以及如何使用该模型对自己的图像进行预测。尽管这是一个相对简单的任务,但它涵盖了深度学习基本流程,包括:

  • 数据准备
  • 模型构建
  • 模型训练
  • 模型预测

输入:

import tensorflow as tf
from tensorflow import keras
import numpy as np
from PIL import Image # 加载MNIST数据集(用于训练模型)
# 这部分代码加载了MNIST数据集,这是一个广泛使用的手写数字图像数据集,包含60,000个训练样本和10,000个测试样本。
# 我们将像素值除以255.0,将它们归一化到0-1的范围内,这是神经网络输入的标准做法。
mnist = keras.datasets.mnist
(train_images, train_labels), (test_images, test_labels) = mnist.load_data() # 规范化像素值
train_images, test_images = train_images / 255.0, test_images / 255.0 # 构建CNN模型
# 这部分代码构建了一个卷积神经网络(CNN)模型。我们使用Keras的Sequential API,它允许我们按顺序堆叠不同的层。
# 我们添加了两个卷积层和两个最大池化层,用于从图像中提取特征。
# 然后,我们添加了一个展平层,将特征映射到一个一维向量。
# 最后,我们添加了两个全连接层,第一个具有128个神经元,第二个具有10个神经元,用于对手写数字进行分类。
# 最后一层使用softmax激活函数输出每个数字的概率。
model = keras.Sequential([
keras.layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)),
keras.layers.MaxPooling2D((2, 2)),
keras.layers.Conv2D(64, (3, 3), activation='relu'),
keras.layers.MaxPooling2D((2, 2)),
keras.layers.Flatten(),
keras.layers.Dense(128, activation='relu'),
keras.layers.Dense(10, activation='softmax')
]) # 编译模型
# 这部分代码构建了一个卷积神经网络(CNN)模型。我们使用Keras的Sequential API,它允许我们按顺序堆叠不同的层。
# 我们添加了两个卷积层和两个最大池化层,用于从图像中提取特征。然后,我们添加了一个展平层,将特征映射到一个一维向量。
# 最后,我们添加了两个全连接层,第一个具有128个神经元,第二个具有10个神经元,用于对手写数字进行分类。
# 最后一层使用softmax激活函数输出每个数字的概率。
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy']) # 训练模型
model.fit(train_images, train_labels, epochs=5) # 函数:预测手写数字图像
# 在构建模型之后,我们需要编译它。
# 我们指定了使用Adam优化器,稀疏分类交台熵损失函数(适用于整数标签),并监控准确率指标。
# 然后,我们使用model.fit函数在训练数据上训练模型,迭代5个epoch。
def predict_digit(img_path):
# 加载图像
img = Image.open(img_path).convert('L')
img = img.resize((28, 28))
img_array = np.array(img) / 255.0
img_array = np.expand_dims(img_array, axis=-1)
img_array = np.expand_dims(img_array, axis=0) # 进行预测
predictions = model.predict(img_array)
predicted_digit = np.argmax(predictions) return predicted_digit # 测试
# 这个 predict_digit 函数用于预测手写数字图像。它接受一个图像文件路径作为输入。
# 首先,它使用PIL库加载图像,将其转换为灰度模式,并调整大小为28x28像素。
# 然后,它将图像转换为NumPy数组,并进行与训练数据相同的归一化处理。
# 由于CNN模型需要一个4D张量作为输入(batch_size, height, width, channels),
# 我们需要使用 np.expand_dims 在最后两个维度上扩展数组形状。
#
# 接下来,我们使用训练好的模型的 predict 方法对预处理后的图像数据进行预测,得到一个包含10个概率值的列表,每个值对应一个数字(0-9)的概率。
# 我们使用 np.argmax 找到概率值最大的索引,即模型预测的数字。
# 最后,函数返回预测的数字。
digit = predict_digit('image-8.png')
print(f'预测的数字是: {digit}')

输出:

预测的数字是: 8

但是完全不知道程序都做了什么...,那就学习它的流程吧。

Process:

  1. 首先,我们加载内置的MNIST数据集,并将像素值归一化到0-1之间。
  2. 然后,我们使用Keras的Sequential API构建一个CNN模型。该模型包含两个卷积层、两个最大池化层、一个展平层和两个全连接层。

    最后一层使用softmax激活函数输出10个数字的概率。
  3. 我们使用稀疏分类交叉熵损失函数和Adam优化器编译模型。
  4. 接下来,我们使用训练数据train_images和train_labels训练模型5个epoch。
  5. 我们定义了一个predict_digit函数,用于预测手写数字图像。这个函数接受一个图像文件路径作为输入。
  6. 在predict_digit函数中,我们首先使用Pillow库加载图像,并将其转换为灰度模式和28x28大小。

    然后,我们将图像数据转换为Numpy数组,并进行相同的归一化处理。

    由于模型的输入维度为(批次大小, 高度, 宽度, 通道数),我们需要使用np.expand_dims在最后两个维度上扩展数组形状。
  7. 接下来,我们使用训练好的模型的predict方法对预处理后的图像数据进行预测,得到一个包含10个概率值的列表,每个值对应一个数字(0-9)的概率。

    我们使用np.argmax找到概率值最大的索引,即模型预测的数字。
  8. 最后,我们调用predict_digit函数,传入你自己的图像文件路径,并打印预测结果。

手写数字图片识别——DL 入门案例的更多相关文章

  1. 用Keras搭建神经网络 简单模版(三)—— CNN 卷积神经网络(手写数字图片识别)

    # -*- coding: utf-8 -*- import numpy as np np.random.seed(1337) #for reproducibility再现性 from keras.d ...

  2. caffe+opencv3.3dnn模块 完成手写数字图片识别

    最近由于项目需要用到caffe,学习了下caffe的用法,在使用过程中也是遇到了些问题,通过上网搜索和问老师的方法解决了,在此记录下过程,方便以后查看,也希望能为和我一样的新手们提供帮助. 顺带附上老 ...

  3. 用Keras搭建神经网络 简单模版(四)—— RNN Classifier 循环神经网络(手写数字图片识别)

    # -*- coding: utf-8 -*- import numpy as np np.random.seed(1337) from keras.datasets import mnist fro ...

  4. 吴裕雄 python神经网络 手写数字图片识别(5)

    import kerasimport matplotlib.pyplot as pltfrom keras.models import Sequentialfrom keras.layers impo ...

  5. 吴裕雄 python 神经网络——TensorFlow 卷积神经网络手写数字图片识别

    import os import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_N ...

  6. 一文全解:利用谷歌深度学习框架Tensorflow识别手写数字图片(初学者篇)

    笔记整理者:王小草 笔记整理时间2017年2月24日 原文地址 http://blog.csdn.net/sinat_33761963/article/details/56837466?fps=1&a ...

  7. 机器学习算法(九): 基于线性判别模型的LDA手写数字分类识别

    1.机器学习算法(九): 基于线性判别模型的LDA手写数字分类识别 1.1 LDA算法简介和应用 线性判别模型(LDA)在模式识别领域(比如人脸识别等图形图像识别领域)中有非常广泛的应用.LDA是一种 ...

  8. Tensorflow学习教程------模型参数和网络结构保存且载入,输入一张手写数字图片判断是几

    首先是模型参数和网络结构的保存 #coding:utf-8 import tensorflow as tf from tensorflow.examples.tutorials.mnist impor ...

  9. opencv实现KNN手写数字的识别

    人工智能是当下很热门的话题,手写识别是一个典型的应用.为了进一步了解这个领域,我阅读了大量的论文,并借助opencv完成了对28x28的数字图片(预处理后的二值图像)的识别任务. 预处理一张图片: 首 ...

  10. LSTM用于MNIST手写数字图片分类

    按照惯例,先放代码: import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data #载入数据集 ...

随机推荐

  1. C++ 多线程的错误和如何避免(10)

    线程中的异常可以使用 std::rethrow_exception 抛给主线程 问题分析:一个线程中抛出的异常是没法被另一个线程捕获的.假如我们在主线程中创建一个子线程,子线程中的函数抛出了异常,主线 ...

  2. 使用winsw将jar包注册成windows服务

    使用winsw将jar包注册成windows服务 注:exe文件作用:使用winsw将jar包注册成windows服务(下载地址https://github.com/winsw/winsw/relea ...

  3. 详解SSL证书系列(1)什么是SSL证书?

    你一定遇到过这种情况,打开一个网站,浏览器弹出警告"您与此网站之间建立的连接不安全.由于此连接不安全,因此信息(如密码或信用卡)不会安全地发送到此网站,并且可能被其他人截获或看到" ...

  4. 为Study.BlazorOne引入Study.Trade模块

    # 1.在Application项目中添加Trade的对应的包 默认的源多半是nuget.org 我们自己的模块,一般在我们自己的NuGet服务器 从"已安装"切换到"浏 ...

  5. macOS安装RZ,SZ

    使用brew 安装lrzsz sudo brew install lrzsz 安装完成后检查是否存在. ls -alh /usr/local/bin/sz 如果安装报错可以手动下载压缩包安装,安装地址 ...

  6. 利用微软官方API实现Office文档的在线预览功能

    随着互联网时代的飞速发展,越来越多的工作开始依赖于云端服务,我们的办公方式也逐渐发生了翻天覆地的变化.在这种背景下,急需一种无需本地安装Office软件,就能快速查看和共享Word.PowerPoin ...

  7. kotlin协程异常处理之-try catch

    kotlin协程小记 协程的async使用 kotlin协程异常处理之-try catch kotlin协程异常处理之-CoroutineExceptionHandler 一.try catch tr ...

  8. Java main()方法的使用说明

    1 package com.bytezreo.singleton; 2 3 /** 4 * 5 * @Description main()方法的使用说明 6 * @author Bytezero·zh ...

  9. CPN Tools 系统建模分析工具(持续更新)

    一直想把之前看有关CPN的文献资料做一个综合性的整理,所以最近花了些时间,把乌克兰敖德萨国家电信科学院交通运输部学院的讲义做一个翻译.本课程的翻译不具授权(如有侵权请及时联系,做删除处理) 本课程的标 ...

  10. Scyther 协议形式化验证翻译 (第二章)

    论文概述:$\alpha +\forall (\sum \oint_{3}^{4})$ 第二章:  操作语义 在第二章中我提出了一种新的安全协议的模型,用于定义安全协议以及协议的行为,在明确的模型中执 ...