Deep Learning Demo of Primary

下面介绍一个入门案例,如何使用TensorFlow和Keras构建一个CNN模型进行手写数字识别,以及如何使用该模型对自己的图像进行预测。尽管这是一个相对简单的任务,但它涵盖了深度学习基本流程,包括:

  • 数据准备
  • 模型构建
  • 模型训练
  • 模型预测

输入:

import tensorflow as tf
from tensorflow import keras
import numpy as np
from PIL import Image # 加载MNIST数据集(用于训练模型)
# 这部分代码加载了MNIST数据集,这是一个广泛使用的手写数字图像数据集,包含60,000个训练样本和10,000个测试样本。
# 我们将像素值除以255.0,将它们归一化到0-1的范围内,这是神经网络输入的标准做法。
mnist = keras.datasets.mnist
(train_images, train_labels), (test_images, test_labels) = mnist.load_data() # 规范化像素值
train_images, test_images = train_images / 255.0, test_images / 255.0 # 构建CNN模型
# 这部分代码构建了一个卷积神经网络(CNN)模型。我们使用Keras的Sequential API,它允许我们按顺序堆叠不同的层。
# 我们添加了两个卷积层和两个最大池化层,用于从图像中提取特征。
# 然后,我们添加了一个展平层,将特征映射到一个一维向量。
# 最后,我们添加了两个全连接层,第一个具有128个神经元,第二个具有10个神经元,用于对手写数字进行分类。
# 最后一层使用softmax激活函数输出每个数字的概率。
model = keras.Sequential([
keras.layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)),
keras.layers.MaxPooling2D((2, 2)),
keras.layers.Conv2D(64, (3, 3), activation='relu'),
keras.layers.MaxPooling2D((2, 2)),
keras.layers.Flatten(),
keras.layers.Dense(128, activation='relu'),
keras.layers.Dense(10, activation='softmax')
]) # 编译模型
# 这部分代码构建了一个卷积神经网络(CNN)模型。我们使用Keras的Sequential API,它允许我们按顺序堆叠不同的层。
# 我们添加了两个卷积层和两个最大池化层,用于从图像中提取特征。然后,我们添加了一个展平层,将特征映射到一个一维向量。
# 最后,我们添加了两个全连接层,第一个具有128个神经元,第二个具有10个神经元,用于对手写数字进行分类。
# 最后一层使用softmax激活函数输出每个数字的概率。
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy']) # 训练模型
model.fit(train_images, train_labels, epochs=5) # 函数:预测手写数字图像
# 在构建模型之后,我们需要编译它。
# 我们指定了使用Adam优化器,稀疏分类交台熵损失函数(适用于整数标签),并监控准确率指标。
# 然后,我们使用model.fit函数在训练数据上训练模型,迭代5个epoch。
def predict_digit(img_path):
# 加载图像
img = Image.open(img_path).convert('L')
img = img.resize((28, 28))
img_array = np.array(img) / 255.0
img_array = np.expand_dims(img_array, axis=-1)
img_array = np.expand_dims(img_array, axis=0) # 进行预测
predictions = model.predict(img_array)
predicted_digit = np.argmax(predictions) return predicted_digit # 测试
# 这个 predict_digit 函数用于预测手写数字图像。它接受一个图像文件路径作为输入。
# 首先,它使用PIL库加载图像,将其转换为灰度模式,并调整大小为28x28像素。
# 然后,它将图像转换为NumPy数组,并进行与训练数据相同的归一化处理。
# 由于CNN模型需要一个4D张量作为输入(batch_size, height, width, channels),
# 我们需要使用 np.expand_dims 在最后两个维度上扩展数组形状。
#
# 接下来,我们使用训练好的模型的 predict 方法对预处理后的图像数据进行预测,得到一个包含10个概率值的列表,每个值对应一个数字(0-9)的概率。
# 我们使用 np.argmax 找到概率值最大的索引,即模型预测的数字。
# 最后,函数返回预测的数字。
digit = predict_digit('image-8.png')
print(f'预测的数字是: {digit}')

输出:

预测的数字是: 8

但是完全不知道程序都做了什么...,那就学习它的流程吧。

Process:

  1. 首先,我们加载内置的MNIST数据集,并将像素值归一化到0-1之间。
  2. 然后,我们使用Keras的Sequential API构建一个CNN模型。该模型包含两个卷积层、两个最大池化层、一个展平层和两个全连接层。

    最后一层使用softmax激活函数输出10个数字的概率。
  3. 我们使用稀疏分类交叉熵损失函数和Adam优化器编译模型。
  4. 接下来,我们使用训练数据train_images和train_labels训练模型5个epoch。
  5. 我们定义了一个predict_digit函数,用于预测手写数字图像。这个函数接受一个图像文件路径作为输入。
  6. 在predict_digit函数中,我们首先使用Pillow库加载图像,并将其转换为灰度模式和28x28大小。

    然后,我们将图像数据转换为Numpy数组,并进行相同的归一化处理。

    由于模型的输入维度为(批次大小, 高度, 宽度, 通道数),我们需要使用np.expand_dims在最后两个维度上扩展数组形状。
  7. 接下来,我们使用训练好的模型的predict方法对预处理后的图像数据进行预测,得到一个包含10个概率值的列表,每个值对应一个数字(0-9)的概率。

    我们使用np.argmax找到概率值最大的索引,即模型预测的数字。
  8. 最后,我们调用predict_digit函数,传入你自己的图像文件路径,并打印预测结果。

手写数字图片识别——DL 入门案例的更多相关文章

  1. 用Keras搭建神经网络 简单模版(三)—— CNN 卷积神经网络(手写数字图片识别)

    # -*- coding: utf-8 -*- import numpy as np np.random.seed(1337) #for reproducibility再现性 from keras.d ...

  2. caffe+opencv3.3dnn模块 完成手写数字图片识别

    最近由于项目需要用到caffe,学习了下caffe的用法,在使用过程中也是遇到了些问题,通过上网搜索和问老师的方法解决了,在此记录下过程,方便以后查看,也希望能为和我一样的新手们提供帮助. 顺带附上老 ...

  3. 用Keras搭建神经网络 简单模版(四)—— RNN Classifier 循环神经网络(手写数字图片识别)

    # -*- coding: utf-8 -*- import numpy as np np.random.seed(1337) from keras.datasets import mnist fro ...

  4. 吴裕雄 python神经网络 手写数字图片识别(5)

    import kerasimport matplotlib.pyplot as pltfrom keras.models import Sequentialfrom keras.layers impo ...

  5. 吴裕雄 python 神经网络——TensorFlow 卷积神经网络手写数字图片识别

    import os import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_N ...

  6. 一文全解:利用谷歌深度学习框架Tensorflow识别手写数字图片(初学者篇)

    笔记整理者:王小草 笔记整理时间2017年2月24日 原文地址 http://blog.csdn.net/sinat_33761963/article/details/56837466?fps=1&a ...

  7. 机器学习算法(九): 基于线性判别模型的LDA手写数字分类识别

    1.机器学习算法(九): 基于线性判别模型的LDA手写数字分类识别 1.1 LDA算法简介和应用 线性判别模型(LDA)在模式识别领域(比如人脸识别等图形图像识别领域)中有非常广泛的应用.LDA是一种 ...

  8. Tensorflow学习教程------模型参数和网络结构保存且载入,输入一张手写数字图片判断是几

    首先是模型参数和网络结构的保存 #coding:utf-8 import tensorflow as tf from tensorflow.examples.tutorials.mnist impor ...

  9. opencv实现KNN手写数字的识别

    人工智能是当下很热门的话题,手写识别是一个典型的应用.为了进一步了解这个领域,我阅读了大量的论文,并借助opencv完成了对28x28的数字图片(预处理后的二值图像)的识别任务. 预处理一张图片: 首 ...

  10. LSTM用于MNIST手写数字图片分类

    按照惯例,先放代码: import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data #载入数据集 ...

随机推荐

  1. RAID 10磁盘阵列实践

    RAID概述 RAID技术通过把多个硬盘设备组合成一个容量更大.安全性更好的磁盘阵列,利用分散读写技术来提升磁盘阵列整体的性能,同时把多个重要数据的副本同步到不同的物理硬盘设备上,从而起到了非常好的数 ...

  2. .NET Core 引发的异常:“sqlsugar.sqlsugarexception” 位于 system.private.corelib.dll 中

    运行一个.NET Core 项目 报错:引发的异常:"sqlsugar.sqlsugarexception" 位于 system.private.corelib.dll 中 . 我 ...

  3. 【防忘笔记】一个例子理解Pytorch中一维卷积nn.Conv1d

    一维卷积层的各项参数如下 torch.nn.Conv1d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1 ...

  4. macOS搭建SonarQube

    目录 前言 准备环境 下载安装包 解压路径:/usr/local 创建数据库 修改配置文件 配置环境变量 启动SonarQube 扫描项目 项目报告介绍 总结 前言 初到新公司,接手8-10个java ...

  5. 【Azure Developer】Github Action使用Azure/login@v1插件登录遇见错误的替代方案

    问题描述 在使用 Github Action  -  Azure/login@v1 的插件时候,登录中国区Azure遇见了问题. Login YAML 内容: - name: 'Login via A ...

  6. CodeCraft-22 and Codeforces Round 795 (Div. 2)C. Sum of Substrings(分类讨论、贪心)

    感觉分类讨论的能有点弱.遇到复杂一点的分类讨论的题目,代码就写的巨长. 首先观察到处在中间位置的1对答案的贡献是11,具体在中间哪个位置是没有关系的. 只有两端的两个位置是比较特殊的 \(1位置处的1 ...

  7. ConcurrentHashMap的put方法

    使用JDK8 源码: public V put(K key, V value) { return putVal(key, value, false); } /** Implementation for ...

  8. court 法院 单词记忆

    court 围绕得到 - 法院 讨好 c 表示得到 catch助记 ourt = turn = around = 围绕 围绕得到某一事物的地方或者行为 英[kɔːt],美[kɔrt] n. 法院, 法 ...

  9. Android 线性布局平分宽度item的隐藏问题

    原文:Android 线性布局平分宽度item的隐藏问题 - Stars-One的杂货小窝 一直只使用layout_weight来平分布局,但是如果隐藏了某个item,会导致其他item宽高有所变化 ...

  10. 算法研究之合并两个已排序的数组java版

    package com.zken.test; /** * @author iamzken * 2015-8-28 * 合并两个有序数组 * */ public class Sorter2 { publ ...