手写数字图片识别——DL 入门案例
Deep Learning Demo of Primary
下面介绍一个入门案例,如何使用TensorFlow和Keras构建一个CNN模型进行手写数字识别,以及如何使用该模型对自己的图像进行预测。尽管这是一个相对简单的任务,但它涵盖了深度学习基本流程,包括:
- 数据准备
- 模型构建
- 模型训练
- 模型预测
输入:

import tensorflow as tf
from tensorflow import keras
import numpy as np
from PIL import Image
# 加载MNIST数据集(用于训练模型)
# 这部分代码加载了MNIST数据集,这是一个广泛使用的手写数字图像数据集,包含60,000个训练样本和10,000个测试样本。
# 我们将像素值除以255.0,将它们归一化到0-1的范围内,这是神经网络输入的标准做法。
mnist = keras.datasets.mnist
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()
# 规范化像素值
train_images, test_images = train_images / 255.0, test_images / 255.0
# 构建CNN模型
# 这部分代码构建了一个卷积神经网络(CNN)模型。我们使用Keras的Sequential API,它允许我们按顺序堆叠不同的层。
# 我们添加了两个卷积层和两个最大池化层,用于从图像中提取特征。
# 然后,我们添加了一个展平层,将特征映射到一个一维向量。
# 最后,我们添加了两个全连接层,第一个具有128个神经元,第二个具有10个神经元,用于对手写数字进行分类。
# 最后一层使用softmax激活函数输出每个数字的概率。
model = keras.Sequential([
keras.layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)),
keras.layers.MaxPooling2D((2, 2)),
keras.layers.Conv2D(64, (3, 3), activation='relu'),
keras.layers.MaxPooling2D((2, 2)),
keras.layers.Flatten(),
keras.layers.Dense(128, activation='relu'),
keras.layers.Dense(10, activation='softmax')
])
# 编译模型
# 这部分代码构建了一个卷积神经网络(CNN)模型。我们使用Keras的Sequential API,它允许我们按顺序堆叠不同的层。
# 我们添加了两个卷积层和两个最大池化层,用于从图像中提取特征。然后,我们添加了一个展平层,将特征映射到一个一维向量。
# 最后,我们添加了两个全连接层,第一个具有128个神经元,第二个具有10个神经元,用于对手写数字进行分类。
# 最后一层使用softmax激活函数输出每个数字的概率。
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
# 训练模型
model.fit(train_images, train_labels, epochs=5)
# 函数:预测手写数字图像
# 在构建模型之后,我们需要编译它。
# 我们指定了使用Adam优化器,稀疏分类交台熵损失函数(适用于整数标签),并监控准确率指标。
# 然后,我们使用model.fit函数在训练数据上训练模型,迭代5个epoch。
def predict_digit(img_path):
# 加载图像
img = Image.open(img_path).convert('L')
img = img.resize((28, 28))
img_array = np.array(img) / 255.0
img_array = np.expand_dims(img_array, axis=-1)
img_array = np.expand_dims(img_array, axis=0)
# 进行预测
predictions = model.predict(img_array)
predicted_digit = np.argmax(predictions)
return predicted_digit
# 测试
# 这个 predict_digit 函数用于预测手写数字图像。它接受一个图像文件路径作为输入。
# 首先,它使用PIL库加载图像,将其转换为灰度模式,并调整大小为28x28像素。
# 然后,它将图像转换为NumPy数组,并进行与训练数据相同的归一化处理。
# 由于CNN模型需要一个4D张量作为输入(batch_size, height, width, channels),
# 我们需要使用 np.expand_dims 在最后两个维度上扩展数组形状。
#
# 接下来,我们使用训练好的模型的 predict 方法对预处理后的图像数据进行预测,得到一个包含10个概率值的列表,每个值对应一个数字(0-9)的概率。
# 我们使用 np.argmax 找到概率值最大的索引,即模型预测的数字。
# 最后,函数返回预测的数字。
digit = predict_digit('image-8.png')
print(f'预测的数字是: {digit}')
输出:
预测的数字是: 8
但是完全不知道程序都做了什么...,那就学习它的流程吧。
Process:
- 首先,我们加载内置的MNIST数据集,并将像素值归一化到0-1之间。
- 然后,我们使用Keras的Sequential API构建一个CNN模型。该模型包含两个卷积层、两个最大池化层、一个展平层和两个全连接层。
最后一层使用softmax激活函数输出10个数字的概率。 - 我们使用稀疏分类交叉熵损失函数和Adam优化器编译模型。
- 接下来,我们使用训练数据train_images和train_labels训练模型5个epoch。
- 我们定义了一个predict_digit函数,用于预测手写数字图像。这个函数接受一个图像文件路径作为输入。
- 在predict_digit函数中,我们首先使用Pillow库加载图像,并将其转换为灰度模式和28x28大小。
然后,我们将图像数据转换为Numpy数组,并进行相同的归一化处理。
由于模型的输入维度为(批次大小, 高度, 宽度, 通道数),我们需要使用np.expand_dims在最后两个维度上扩展数组形状。 - 接下来,我们使用训练好的模型的predict方法对预处理后的图像数据进行预测,得到一个包含10个概率值的列表,每个值对应一个数字(0-9)的概率。
我们使用np.argmax找到概率值最大的索引,即模型预测的数字。 - 最后,我们调用predict_digit函数,传入你自己的图像文件路径,并打印预测结果。
手写数字图片识别——DL 入门案例的更多相关文章
- 用Keras搭建神经网络 简单模版(三)—— CNN 卷积神经网络(手写数字图片识别)
# -*- coding: utf-8 -*- import numpy as np np.random.seed(1337) #for reproducibility再现性 from keras.d ...
- caffe+opencv3.3dnn模块 完成手写数字图片识别
最近由于项目需要用到caffe,学习了下caffe的用法,在使用过程中也是遇到了些问题,通过上网搜索和问老师的方法解决了,在此记录下过程,方便以后查看,也希望能为和我一样的新手们提供帮助. 顺带附上老 ...
- 用Keras搭建神经网络 简单模版(四)—— RNN Classifier 循环神经网络(手写数字图片识别)
# -*- coding: utf-8 -*- import numpy as np np.random.seed(1337) from keras.datasets import mnist fro ...
- 吴裕雄 python神经网络 手写数字图片识别(5)
import kerasimport matplotlib.pyplot as pltfrom keras.models import Sequentialfrom keras.layers impo ...
- 吴裕雄 python 神经网络——TensorFlow 卷积神经网络手写数字图片识别
import os import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_N ...
- 一文全解:利用谷歌深度学习框架Tensorflow识别手写数字图片(初学者篇)
笔记整理者:王小草 笔记整理时间2017年2月24日 原文地址 http://blog.csdn.net/sinat_33761963/article/details/56837466?fps=1&a ...
- 机器学习算法(九): 基于线性判别模型的LDA手写数字分类识别
1.机器学习算法(九): 基于线性判别模型的LDA手写数字分类识别 1.1 LDA算法简介和应用 线性判别模型(LDA)在模式识别领域(比如人脸识别等图形图像识别领域)中有非常广泛的应用.LDA是一种 ...
- Tensorflow学习教程------模型参数和网络结构保存且载入,输入一张手写数字图片判断是几
首先是模型参数和网络结构的保存 #coding:utf-8 import tensorflow as tf from tensorflow.examples.tutorials.mnist impor ...
- opencv实现KNN手写数字的识别
人工智能是当下很热门的话题,手写识别是一个典型的应用.为了进一步了解这个领域,我阅读了大量的论文,并借助opencv完成了对28x28的数字图片(预处理后的二值图像)的识别任务. 预处理一张图片: 首 ...
- LSTM用于MNIST手写数字图片分类
按照惯例,先放代码: import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data #载入数据集 ...
随机推荐
- Jenkins共享库使用
简单使用 共享库(Shared libraries)是一种可以用来封装函数.变量甚至整个 Pipeline 的机制.通过共享库,可以将常用的功能和流程逻辑定义在单独的 Groovy 脚本中,然后在多个 ...
- .NET Core 集成微信支付签名错误
.NET Core 集成微信支付签名错误 The provided data is tagged with 'Universal' class value '16', but it should ha ...
- Html飞机大战(十六): 完成"清除"敌机奖励类
好家伙, 我们先来尝试完成一个最简单的功能 正面buff: 1.消灭全图敌机 我们要先找一个好看一点的素材 把背景弄成透明的(搞了好久),感谢度娘的技术支持Photoshop中如何把图 ...
- 【Azure Kubernetes】通过 kubelogin 进行非交互式登录AKS
问题描述 当对AKS的登录方式(认证和授权)从"Local Account with Kubernetes RBAC "改变为"Azure AD authenticati ...
- 【Azure 应用服务】App Service运行时突然中断:There is not enough space on the disk : 'D:localTempASPNETCORE...
问题描述 App Service运行过程中,突然出现了 There is not enough space on the disk : 'D:localTempASPNETCORE_xxxxxx-xx ...
- 【Azure Redis 缓存】Azure Redis加入VNET后,在另一个区域(如中国东部二区)的VNET无法访问Redis服务(注:两个VNET已经结对,相互之间可以互ping)
问题描述 为了保护Redis资源,把它与VNET集成后,实现只能通过VNET内网访问.在东二的区域中部署两个Redis服务后,发现一个奇怪的现象:东1区中的VM资源通过全局对等互联(Peering)实 ...
- Java 继承成员变量和继承方法的区别
1 package com.bytezreo.duotai3; 2 3 /** 4 * 5 * @Description 继承成员变量和继承方法的区别 6 * @author Bytezero·zhe ...
- OpenCV开发笔记(七十七):相机标定(二):通过棋盘标定计算相机内参矩阵矫正畸变摄像头图像
前言 通过相机图片可以识别出棋盘角点了,这时候我们需要通过角点去计算相机内参矩阵,通过上篇得知畸变的原理,所以我们尽可能要全方位都能获取标定图片,全方位意思是提供的多张图综合起来基本覆盖了相机所有 ...
- Android 优雅的Activity回调代码封装
原文地址: Android 优雅的Activity回调代码封装 - Stars-One的杂货小窝 之前提到Jetpack架构组件学习(3)--Activity Results API使用 - Star ...
- CSharp的lambda表达式匿名类扩展方法
c#的lamba表达式 之前已经写过一些关于委托还有事件的文章,今天就来介绍一下lambda表达式. 首先定义需要的函数以及委托 { public delegate void DoNothingDel ...