标准定足数交集

定义和背景

  1. 系统模型:

    • 系统中有 \(n\) 个节点,其中最多 \(f\) 个节点可能是拜占庭故障节点(恶意节点)。
    • 为了保证容忍 \(f\) 个拜占庭节点,系统通常需要至少 \(3f + 1\) 个节点。
  2. Quorum(定足数):

    • 一个定足数(quorum)是一个足够大的节点子集,能够代表整个系统做出决定。在拜占庭容错模型中,一个常用的定足数大小是 \(2f + 1\) 个节点。
  3. 标准多数交集特性(Quorum Intersection Property):

    • 定足数交集特性要求任意两个定足数集合之间至少有一个共同节点。这个共同节点确保信息的一致性,即便存在恶意节点。

数学依据

考虑一个系统中总共有 \(n = 3f + 1\) 个节点,其中最多 \(f\) 个节点可能是拜占庭故障节点。为确保共识的正确性和安全性,我们需要以下条件:

  1. Quorum Size:

    • 每个定足数(quorum)包含至少 \(2f + 1\) 个节点。
  2. Intersection Property:

    • 任意两个定足数集合之间至少有一个公共节点。假设有两个定足数 \(Q_1\) 和 \(Q_2\),其中 \(Q_1\) 和 \(Q_2\) 均包含 \(2f + 1\) 个节点。我们需要证明 \(Q_1\) 和 \(Q_2\) 之间至少有一个节点是公共的。

证明

我们有总共 \(n = 3f + 1\) 个节点:

  1. 假设不相交:

    • 如果假设 \(Q_1\) 和 \(Q_2\) 没有交集,那么 \(Q_1\) 和 \(Q_2\) 的节点总数将会是 \((2f + 1) + (2f + 1) = 4f + 2\)。
  2. 矛盾:

    • 由于总体只有 \(3f + 1\) 个节点,而 \(4f + 2\) 大于 \(3f + 1\),这与总节点数冲突,因此 \(Q_1\) 和 \(Q_2\) 必然至少有一个公共节点。
  3. 结论:

    • 因此,任意两个包含 \(2f + 1\) 个节点的定足数必然至少有一个公共节点。这就是标准多数交集特性的核心。

应用场景

  1. 共识算法(例如拜占庭容错共识算法,如 PBFT、Tendermint):

    • 在这些共识算法中,参与者必须就某一事务(如交易、状态更改)达成一致。标准多数交集特性确保即使部分节点是恶意的,只要诚实节点占多数(\(2f + 1\)),系统能够达成安全的一致性。
  2. 分布式数据库

    • 在分布式数据库中,更新和查询需要通过多数集合来确保数据的强一致性和可用性。
  3. 可靠性和容错性

    • 通过确保定足数之间的交集特性,系统能够有效地防止数据一致性问题,即便存在网络分区或节点故障。

Standard Quorum Intersection的更多相关文章

  1. Paper Reading_Distributed System

    最近(以及预感接下来的一年)会读很多很多的paper......不如开个帖子记录一下读paper心得 Mark一个上海交通大学东岳网络工作室的paper notebook Mark一个大神的笔记 Ed ...

  2. Gym 100952J&&2015 HIAST Collegiate Programming Contest J. Polygons Intersection【计算几何求解两个凸多边形的相交面积板子题】

    J. Polygons Intersection time limit per test:2 seconds memory limit per test:64 megabytes input:stan ...

  3. Introducing XAML Standard and .NET Standard 2.0

    XAML Standard We are pleased to announce XAML Standard, which is a standards-based effort to unify X ...

  4. Codeforces Round #506 (Div. 3) C. Maximal Intersection

    C. Maximal Intersection time limit per test 3 seconds memory limit per test 256 megabytes input stan ...

  5. 一篇很好的解释了.Net Core, .Net Framework, .Net standard library, Xamarin 之间关系的文章 (转载)

    Introducing .NET Standard In my last post, I talked about how we want to make porting to .NET Core e ...

  6. codeforces D. Area of Two Circles' Intersection 计算几何

    D. Area of Two Circles' Intersection time limit per test 2 seconds memory limit per test 256 megabyt ...

  7. CF1029C Maximal Intersection 暴力枚举

    Maximal Intersection time limit per test 3 seconds memory limit per test 256 megabytes input standar ...

  8. 理解 .NET Platform Standard

    相关博文:ASP.NET 5 Target framework dnx451 and dnxcore50 .NET Platform Standard:https://github.com/dotne ...

  9. [LeetCode] Intersection of Two Arrays II 两个数组相交之二

    Given two arrays, write a function to compute their intersection. Example:Given nums1 = [1, 2, 2, 1] ...

  10. [LeetCode] Intersection of Two Arrays 两个数组相交

    Given two arrays, write a function to compute their intersection. Example:Given nums1 = [1, 2, 2, 1] ...

随机推荐

  1. 算法金 | Transformer,一个神奇的算法模型!!

    大侠幸会,在下全网同名「算法金」 0 基础转 AI 上岸,多个算法赛 Top 「日更万日,让更多人享受智能乐趣」 抱个拳,送个礼 在现代自然语言处理(NLP)领域,Transformer 模型的出现带 ...

  2. 3568F-Linux应用开发手册

       

  3. 【JavaScript】聊聊js中关于this的指向

    前言 最近在看回JavaScript的面试题,this 指向问题是入坑前端必须了解的知识点,现在迎来了ES6+的时代,因为箭头函数的出现,所以感觉有必要对 this 问题梳理一下,所以刚好总结一下Ja ...

  4. Java反射机制原理详解

    什么是反射? Java反射机制的核心是在程序运行时动态加载类并获取类的详细信息,从而操作类或对象的属性和方法.本质是JVM得到class对象之后,再通过class对象进行反编译,从而获取对象的各种信息 ...

  5. SpringBoot集成实时通讯WebSocket和其它代替方案

    WebSocket 双向实时通讯 一.添加WebSocketConfig配置类 /** * 开启WebSocketConfig */ @Configuration public class WebSo ...

  6. Mybatis ResultMap复杂对象一对一查询结果映射之association

    Mybatis复杂对象映射配置ResultMap的association association:映射到POJO的某个复杂类型属性,比如订单order对象里面包含user对象 表结构 项目结构 pom ...

  7. 微软GraphRAG框架源码解读

    两个月前,微软发布了GraphRAG的论文<From Local to Global: A Graph RAG Approach to Query-Focused Summarization&g ...

  8. Apache Kyuubi 在B站大数据场景下的应用实践

    01 背景介绍 近几年随着B站业务高速发展,数据量不断增加,离线计算集群规模从最初的两百台发展到目前近万台,从单机房发展到多机房架构.在离线计算引擎上目前我们主要使用Spark.Presto.Hive ...

  9. supervisor.conf部署及维护

    启动服务 supervisord -c /etc/supervisord.conf 启动服务 supervisorctl start 关闭服务 supervisorctl stop

  10. Nuxt.js头部魔法:轻松自定义页面元信息,提升用户体验

    扫描二维码关注或者微信搜一搜:编程智域 前端至全栈交流与成长 useHead 函数概述 useHead是一个用于在 Nuxt 应用中自定义页面头部属性的函数.它由Unhead库提供支持,允许开发者以编 ...