给定有向图G=(V,E)。设P 是G 的一个简单路(顶点不相交)的集合。如果V 中每个顶点恰好在P 的一条路上,则称P是G 的一个路径覆盖。P 中路径可以从V 的任何一个顶点开始,长度也是任意的,特别地,可以为0。G 的最小路径覆盖是G 的所含路径条数最少的路径覆盖。设计一个有效算法求一个有向无环图G 的最小路径覆盖。提示:设V={1,2,.... ,n},构造网络G1=(V1,E1)如下:

每条边的容量均为1。求网络G1的( 0 x , 0 y )最大流。

«编程任务:

对于给定的给定有向无环图G,编程找出G的一个最小路径覆盖。

输入输出格式

输入格式:

件第1 行有2个正整数n和m。n是给定有向无环图G 的顶点数,m是G 的边数。接下来的m行,每行有2 个正整数i和j,表示一条有向边(i,j)。

输出格式:

从第1 行开始,每行输出一条路径。文件的最后一行是最少路径数。

输入输出样例

输入样例#1: 复制

11 12
1 2
1 3
1 4
2 5
3 6
4 7
5 8
6 9
7 10
8 11
9 11
10 11
输出样例#1: 复制

1 4 7 10 11
2 5 8
3 6 9
3

说明

1<=n<=150,1<=m<=6000

由@FlierKing提供SPJ

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
#include<cmath>
#include<vector>
using namespace std;
#define INF 0x3f3f3f3f
const int maxn = 6e4+;
int n,m,s,t,u,v;
struct Edge {
int from, to, cap, flow;
};
vector<Edge> edges;
vector<int> G[maxn];
bool vis[maxn];
int d[maxn], cur[maxn],nxt[maxn]; void Init()
{
memset(d,,sizeof d);
for(int i=;i<=*n+;i++) G[i].clear();
} void AddEdge(int from, int to, int cap)
{
edges.push_back((Edge){from, to, cap, });
edges.push_back((Edge){to, from, , });
int m = edges.size();
G[from].push_back(m-); G[to].push_back(m-);
} bool bfs()
{
memset(vis,,sizeof vis);
queue<int> q;
q.push(s);
d[s] = ; vis[s] = ;
while (!q.empty())
{
int x = q.front(); q.pop();
for(int i = ; i < G[x].size(); ++i)
{
Edge &e = edges[G[x][i]];
if (!vis[e.to] && e.cap > e.flow)
{
vis[e.to] = ;
d[e.to] = d[x] + ;
q.push(e.to);
}
}
}
return vis[t];
} int dfs(int x,int a)
{
if(x == t || a == ) return a;
int flow = , f;
for(int &i = cur[x]; i < G[x].size(); ++i)
{
Edge &e = edges[G[x][i]];
if (d[e.to] == d[x] + && (f=dfs(e.to, min(a, e.cap-e.flow))) > )
{
e.flow += f;
edges[G[x][i]^].flow -= f;
flow += f; a -= f;
if (a == ) break;
}
}
return flow;
} int MaxFlow(int s, int t)
{
int flow = ;
while (bfs())
{
memset(cur,,sizeof cur);
flow += dfs(s, INF);
}
return flow;
} int main()
{
while(scanf("%d%d",&n,&m)!=EOF)
{
Init();
for(int i=;i<=m;i++)
{
scanf("%d%d",&u,&v);
AddEdge(u,v+n,);
}
s=,t=*n+;
for(int i=;i<=n;i++)
{
AddEdge(s,i,);
AddEdge(i+n,t,);
}
int ans=MaxFlow(s,t);
memset(nxt,,sizeof nxt);
memset(vis,,sizeof vis); for(int i=;i<=n;i++)
{
for(int j=;j<G[i].size();j++)
{
Edge &e=edges[G[i][j]];
if(e.flow>) nxt[e.from]=e.to-n;
}
}
for(int i=;i<=n;i++)
{
if(!vis[i])
{
int a=i;
vis[a]=;
printf("%d",a);
while(nxt[a])
{
a=nxt[a];
vis[a]=;
printf(" %d",a);
}
printf("\n");
}
}
printf("%d\n",n-ans);
}
return ;
}

  

洛谷 P2764(最小路径覆盖=节点数-最大匹配)的更多相关文章

  1. 洛谷 P2764 最小路径覆盖问题 解题报告

    P2764 最小路径覆盖问题 问题描述: 给定有向图\(G=(V,E)\).设\(P\) 是\(G\) 的一个简单路(顶点不相交)的集合.如果\(V\) 中每个顶点恰好在\(P\) 的一条路上,则称\ ...

  2. 洛谷 P2764 最小路径覆盖问题【最大流+拆点+路径输出】

    题目链接:https://www.luogu.org/problemnew/show/P2764 题目描述 «问题描述: 给定有向图G=(V,E).设P 是G 的一个简单路(顶点不相交)的集合.如果V ...

  3. 洛谷P2764 最小路径覆盖问题

    有向无环图的最小路径点覆盖 最小路径覆盖就是给定一张DAG,要求用尽量少的不相交的简单路径,覆盖有向无环图的所有顶点. 有定理:顶点数-路径数=被覆盖的边数. 要理解的话可以从两个方向: 假设DAG已 ...

  4. 【刷题】洛谷 P2764 最小路径覆盖问题

    题目描述 «问题描述: 给定有向图G=(V,E).设P 是G 的一个简单路(顶点不相交)的集合.如果V 中每个顶点恰好在P 的一条路上,则称P是G 的一个路径覆盖.P 中路径可以从V 的任何一个顶点开 ...

  5. 洛谷P2764 最小路径覆盖问题(最大流)

    传送门 先说做法:把原图拆成一个二分图,每一个点被拆成$A_i,B_i$,若原图中存在边$(u,v)$,则连边$(A_u,B_v)$,然后$S$对所有$A$连边,所有$B$对$T$连边,然后跑一个最大 ...

  6. 洛谷P2764 最小路径覆盖问题(二分图)

    题意 给出一张有向无环图,求出用最少的路径覆盖整张图,要求路径在定点处不相交 输出方案 Sol 定理:路径覆盖 = 定点数 - 二分图最大匹配数 直接上匈牙利 输出方案的话就不断的从一个点跳匹配边 # ...

  7. 洛谷 P2764 最小路径覆盖问题【匈牙利算法】

    经典二分图匹配问题.把每个点拆成两个,对于原图中的每一条边(i,j)连接(i,j+n),最小路径覆盖就是点数n-二分图最大匹配.方案直接顺着匹配dsf.. #include<iostream&g ...

  8. 洛谷 [P2764]最小路径覆盖问题

    二分图应用模版 #include <iostream> #include <cstdio> #include <algorithm> #include <cs ...

  9. 洛谷-p2764(最小路径覆盖)(网络流24题)

    #include<iostream> #include<algorithm> #include<queue> #include<cstring> #in ...

随机推荐

  1. JAVA项目打包成可运行的exe程序

    前言:本篇文章为原创,转载请注明地址,谢谢. 我们一些时候,可能需要需要把我们完成的java打包,打成jar文件或者exe文件.这时候就请鄙人的这篇文章. 言尽于此,Let‘s go! 一.导出jar ...

  2. Ansibile之playbook初识

    一.playbook简介 ansiblie的任务配置文件被称为playbook,俗称“剧本”,每一个剧本(playbook)中都包含了一系列的任务,这每个任务在ansible中又被称为“戏剧”(pla ...

  3. 解决WordPress不能发邮件,WordPress 无法发送邮件

    解决WordPress不能发邮件,WordPress 无法发送邮件,不得不说WordPress这个问题真的很烦人,研究了一下午发现不能发邮件的问题无非以下几种! 1.系统本身问题,这个直接装个插件即可 ...

  4. 在 ASP.NET Core 项目中使用 MediatR 实现中介者模式

    一.前言  最近有在看 DDD 的相关资料以及微软的 eShopOnContainers 这个项目中基于 DDD 的架构设计,在 Ordering 这个示例服务中,可以看到各层之间的代码调用与我们之前 ...

  5. iOS核心动画高级技巧-1

    1. 图层树 图层的树状结构 巨妖有图层,洋葱也有图层,你有吗?我们都有图层 -- 史莱克 Core Animation其实是一个令人误解的命名.你可能认为它只是用来做动画的,但实际上它是从一个叫做L ...

  6. Bootstrap中手指控制轮播图切换

    通过手指的滑动来控制轮播图中的图片内容的切换 // 1. 获取手指在轮播图元素上的一个滑动方向(左右) // 获取界面上的轮播图容器 var $carousels = $('.carousel'); ...

  7. keypress 和 blur 事件冲突的问题

    需求:点击需求:点击添加标签,出来input框,内容输入完成后点击enter键和blur时都可以执行提交标签的效果,提交时对内容进行判断,执行完成后清除input内的内容.如下图 问题:内容输入完成后 ...

  8. SCAU-1078 破密-数学的应用

        另外一种方法和该题的题目在这位大佬的博客里 SCAU 1078 破密 还可以参考 https://blog.csdn.net/sinat_34200786/article/details/78 ...

  9. 【2018寒假集训 Day2】【动态规划】抢金块

    抢金块 输入文件:gold.in 输出文件:gold.out 问题描述: 地面上有一些格子,每个格子上面都有金块,但不同格子上的金块有不同的价值,你一次可以跳S至T步 .如果S=2,T=4.你就可以跳 ...

  10. day20191104笔记

    MyBatis笔记: 一.MyBatis半自动ORM映射框架, 将数据库中的数据和程序中的数据进行自动映射的前提条件 1. 数据库中的字段必须和程序中的属性保持一致 2. 程序中属性的数据类型必须是基 ...