【集合框架】JDK1.8源码分析之IdentityHashMap(四)
一、前言
前面已经分析了HashMap与LinkedHashMap,现在我们来分析不太常用的IdentityHashMap,从它的名字上也可以看出来用于表示唯一的HashMap,仔细分析了其源码,发现其数据结构与HashMap使用的数据结构完全不同,因为在继承关系上面,他们两没有任何关系。下面,进入我们的分析阶段。
二、IdentityHashMap示例
import java.util.Map;
import java.util.HashMap;
import java.util.IdentityHashMap; public class IdentityHashMapTest {
public static void main(String[] args) {
Map<String, String> hashMaps = new HashMap<String, String>();
Map<String, String> identityMaps = new IdentityHashMap<String, String>();
hashMaps.put(new String("aa"), "aa");
hashMaps.put(new String("aa"), "bb"); identityMaps.put(new String("aa"), "aa");
identityMaps.put(new String("aa"), "bb"); System.out.println(hashMaps.size() + " : " + hashMaps);
System.out.println(identityMaps.size() + " : " + identityMaps);
}
}
运行结果:
1 : {aa=bb}
2 : {aa=bb, aa=aa}
说明:IdentityHashMap只有在key完全相等(同一个引用),才会覆盖,而HashMap则不会。
三、IdentityHashMap数据结构
说明:IdentityHashMap的数据很简单,底层实际就是一个Object数组,在逻辑上需要看成是一个环形的数组,解决冲突的办法是:根据计算得到散列位置,如果发现该位置上已经有元素,则往后查找,直到找到空位置,进行存放,如果没有,直接进行存放。当元素个数达到一定阈值时,Object数组会自动进行扩容处理。
四、IdentityHashMap源码分析
4.1 类的继承关系
public class IdentityHashMap<K,V>
extends AbstractMap<K,V>
implements Map<K,V>, java.io.Serializable, Cloneable
说明:继承了AbstractMap抽象类,实现了Map接口,可序列化接口,可克隆接口。
4.2 类的属性
public class IdentityHashMap<K,V>
extends AbstractMap<K,V>
implements Map<K,V>, java.io.Serializable, Cloneable
{
// 缺省容量大小
private static final int DEFAULT_CAPACITY = 32;
// 最小容量
private static final int MINIMUM_CAPACITY = 4;
// 最大容量
private static final int MAXIMUM_CAPACITY = 1 << 29;
// 用于存储实际元素的表
transient Object[] table;
// 大小
int size;
// 对Map进行结构性修改的次数
transient int modCount;
// null key所对应的值
static final Object NULL_KEY = new Object();
}
说明:可以看到类的底层就是使用了一个Object数组来存放元素。
4.3 类的构造函数
1. IdentityHashMap()型构造函数
public IdentityHashMap() {
init(DEFAULT_CAPACITY);
}
2. IdentityHashMap(int)型构造函数
public IdentityHashMap(int expectedMaxSize) {
if (expectedMaxSize < 0)
throw new IllegalArgumentException("expectedMaxSize is negative: "
+ expectedMaxSize);
init(capacity(expectedMaxSize));
}
3. IdentityHashMap(Map<? extends K, ? extends V>)型构造函数
public IdentityHashMap(Map<? extends K, ? extends V> m) {
// 调用其他构造函数
this((int) ((1 + m.size()) * 1.1));
putAll(m);
}
4.4 重要函数分析
1. capacity函数
// 此函数返回的值是最小大于expectedMaxSize的2次幂
private static int capacity(int expectedMaxSize) {
// assert expectedMaxSize >= 0;
return
(expectedMaxSize > MAXIMUM_CAPACITY / 3) ? MAXIMUM_CAPACITY :
(expectedMaxSize <= 2 * MINIMUM_CAPACITY / 3) ? MINIMUM_CAPACITY :
Integer.highestOneBit(expectedMaxSize + (expectedMaxSize << 1));
}
说明: 此函数返回的值是最小的且大于expectedMaxSize的2次幂的值。
2. hash函数
// hash函数,由于length总是为2的n次幂,所以 & (length - 1)相当于对length取模
private static int hash(Object x, int length) {
int h = System.identityHashCode(x);
// Multiply by -127, and left-shift to use least bit as part of hash
return ((h << 1) - (h << 8)) & (length - 1);
}
说明:hash函数用于散列,并且保证元素的散列值会在数组偶次索引。
3. get函数
public V get(Object key) {
// 保证null的key会转化为Object(NULL_KEY)
Object k = maskNull(key);
// 保存table
Object[] tab = table;
int len = tab.length;
// 得到key的散列位置
int i = hash(k, len);
// 遍历table,解决散列冲突的办法是若冲突,则往后寻找空闲区域
while (true) {
Object item = tab[i];
// 判断是否相等(地址是否相等)
if (item == k)
// 地址相等,即完全相等的两个对象
return (V) tab[i + 1];
// 对应散列位置的元素为空,则返回空
if (item == null)
return null;
// 取下一个Key索引
i = nextKeyIndex(i, len);
}
}
说明:该函数比较key值是否完全相同(对象类型则是否为同一个引用,基本类型则是否内容相等)
4. nextKeyIndex函数
// 下一个Key索引
private static int nextKeyIndex(int i, int len) {
// 往后移两个单位
return (i + 2 < len ? i + 2 : 0);
}
说明:此函数用于发生冲突时,取下一个位置进行判断。
5. put函数
public V put(K key, V value) {
// 保证null的key会转化为Object(NULL_KEY)
final Object k = maskNull(key); retryAfterResize: for (;;) {
final Object[] tab = table;
final int len = tab.length;
int i = hash(k, len); for (Object item; (item = tab[i]) != null;
i = nextKeyIndex(i, len)) {
if (item == k) { // 经过hash计算的项与key相等
@SuppressWarnings("unchecked")
// 取得值
V oldValue = (V) tab[i + 1];
// 将value存入
tab[i + 1] = value;
// 返回旧值
return oldValue;
}
} // 大小加1
final int s = size + 1;
// Use optimized form of 3 * s.
// Next capacity is len, 2 * current capacity.
// 如果3 * size大于length,则会进行扩容操作
if (s + (s << 1) > len && resize(len))
// 扩容后重新计算元素的值,寻找合适的位置进行存放
continue retryAfterResize;
// 结构性修改加1
modCount++;
// 存放key与value
tab[i] = k;
tab[i + 1] = value;
// 更新size
size = s;
return null;
}
}
说明:若传入的key在表中已经存在了(强调:是同一个引用),则会用新值代替旧值并返回旧值;如果元素个数达到阈值,则扩容,然后再寻找合适的位置存放key和value。
6. resize函数
private boolean resize(int newCapacity) {
// assert (newCapacity & -newCapacity) == newCapacity; // power of 2
int newLength = newCapacity * 2;
// 保存原来的table
Object[] oldTable = table;
int oldLength = oldTable.length;
// 旧表是否为最大容量的2倍
if (oldLength == 2 * MAXIMUM_CAPACITY) { // can't expand any further
// 之前元素个数为最大容量,抛出异常
if (size == MAXIMUM_CAPACITY - 1)
throw new IllegalStateException("Capacity exhausted.");
return false;
}
// 旧表长度大于新表长度,返回false
if (oldLength >= newLength)
return false;
// 生成新表
Object[] newTable = new Object[newLength];
// 将旧表中的所有元素重新hash到新表中
for (int j = 0; j < oldLength; j += 2) {
Object key = oldTable[j];
if (key != null) {
Object value = oldTable[j+1];
oldTable[j] = null;
oldTable[j+1] = null;
int i = hash(key, newLength);
while (newTable[i] != null)
i = nextKeyIndex(i, newLength);
newTable[i] = key;
newTable[i + 1] = value;
}
}
// 新表赋值给table
table = newTable;
return true;
}
说明:当表中元素达到阈值时,会进行扩容处理,扩容后会旧表中的元素重新hash到新表中。
7. remove函数
public V remove(Object key) {
// 保证null的key会转化为Object(NULL_KEY)
Object k = maskNull(key);
Object[] tab = table;
int len = tab.length;
// 计算hash值
int i = hash(k, len); while (true) {
Object item = tab[i];
// 找到key相等的项
if (item == k) {
modCount++;
size--;
@SuppressWarnings("unchecked")
V oldValue = (V) tab[i + 1];
tab[i + 1] = null;
tab[i] = null;
// 删除后需要进行后续处理,把之前由于冲突往后挪的元素移到前面来
closeDeletion(i);
return oldValue;
}
// 该项为空
if (item == null)
return null;
// 下一项
i = nextKeyIndex(i, len);
}
}
8. closeDeletion函数
private void closeDeletion(int d) {
// Adapted from Knuth Section 6.4 Algorithm R
Object[] tab = table;
int len = tab.length; // Look for items to swap into newly vacated slot
// starting at index immediately following deletion,
// and continuing until a null slot is seen, indicating
// the end of a run of possibly-colliding keys.
Object item;
// 把该元素后面符合移动规定的元素往前面移动
for (int i = nextKeyIndex(d, len); (item = tab[i]) != null;
i = nextKeyIndex(i, len) ) {
// The following test triggers if the item at slot i (which
// hashes to be at slot r) should take the spot vacated by d.
// If so, we swap it in, and then continue with d now at the
// newly vacated i. This process will terminate when we hit
// the null slot at the end of this run.
// The test is messy because we are using a circular table.
int r = hash(item, len);
if ((i < r && (r <= d || d <= i)) || (r <= d && d <= i)) {
tab[d] = item;
tab[d + 1] = tab[i + 1];
tab[i] = null;
tab[i + 1] = null;
d = i;
}
}
}
说明:在删除一个元素后会进行一次closeDeletion处理,重新分配元素的位置。
下图表示在closeDeletion前和closeDeletion后的示意图
说明:假设:其中,("aa" -> "aa")经过hash后在第0项,("bb" -> "bb")经过hash后也应该在0项,发生冲突,往后移到第2项,("cc" -> "cc")经过hash后在第2项,发生冲突,往后面移动到第4项,("gg" -> "gg")经过hash在第2项,发生冲突,往后移动到第6项,("dd" -> "dd")在第8项,("ee" -> "ee")在第12项。当删除("bb" -> "bb")后,进行处理后的元素布局如右图所示。
五、总结
IdentityHashMap与HashMap在数据结构上很不相同,并且处理hash冲突的方法也不相同。其中,IdentityHashMap只有当key为同一个引用时才认为是相同的,而HashMap还包括equals相等,即内容相同。
【集合框架】JDK1.8源码分析之IdentityHashMap(四)的更多相关文章
- 【集合框架】JDK1.8源码分析之HashMap(一) 转载
[集合框架]JDK1.8源码分析之HashMap(一) 一.前言 在分析jdk1.8后的HashMap源码时,发现网上好多分析都是基于之前的jdk,而Java8的HashMap对之前做了较大的优化 ...
- 【集合框架】JDK1.8源码分析之ArrayList详解(一)
[集合框架]JDK1.8源码分析之ArrayList详解(一) 一. 从ArrayList字表面推测 ArrayList类的命名是由Array和List单词组合而成,Array的中文意思是数组,Lis ...
- 【集合框架】JDK1.8源码分析之Collections && Arrays(十)
一.前言 整个集合框架的常用类我们已经分析完成了,但是还有两个工具类我们还没有进行分析.可以说,这两个工具类对于我们操作集合时相当有用,下面进行分析. 二.Collections源码分析 2.1 类的 ...
- 【集合框架】JDK1.8源码分析HashSet && LinkedHashSet(八)
一.前言 分析完了List的两个主要类之后,我们来分析Set接口下的类,HashSet和LinkedHashSet,其实,在分析完HashMap与LinkedHashMap之后,再来分析HashSet ...
- 集合之TreeSet(含JDK1.8源码分析)
一.前言 前面分析了Set接口下的hashSet和linkedHashSet,下面接着来看treeSet,treeSet的底层实现是基于treeMap的. 四个关注点在treeSet上的答案 二.tr ...
- 集合之LinkedHashSet(含JDK1.8源码分析)
一.前言 上篇已经分析了Set接口下HashSet,我们发现其操作都是基于hashMap的,接下来看LinkedHashSet,其底层实现都是基于linkedHashMap的. 二.linkedHas ...
- 集合之HashSet(含JDK1.8源码分析)
一.前言 我们已经分析了List接口下的ArrayList和LinkedList,以及Map接口下的HashMap.LinkedHashMap.TreeMap,接下来看的是Set接口下HashSet和 ...
- 【JUC】JDK1.8源码分析之ArrayBlockingQueue(三)
一.前言 在完成Map下的并发集合后,现在来分析ArrayBlockingQueue,ArrayBlockingQueue可以用作一个阻塞型队列,支持多任务并发操作,有了之前看源码的积累,再看Arra ...
- Java集合系列[4]----LinkedHashMap源码分析
这篇文章我们开始分析LinkedHashMap的源码,LinkedHashMap继承了HashMap,也就是说LinkedHashMap是在HashMap的基础上扩展而来的,因此在看LinkedHas ...
随机推荐
- oracle10g冷备份和恢复过程记录
一.冷备份: 1.操作系统无法进入,需要利用启动盘进入winpe系统进行操作. 2.进入PE系统后,搜索所有盘符确认没有其它被作为oracle数据文件存放的目录,也就是说所有oracle有关的文件都存 ...
- awk使用shell变量
awk使用shell变量 (可以计算浮点数) 其实在awk里,是不能直接使用shell变量的 方法是:awk -v 选项让awk 里使用shell变量 TIME=60 awk -v time=&qu ...
- android——相对布局,表格布局
1.相对布局 RelativeLayout 又称作相对布局,也是一种非常常用的布局.和LinearLayout 的排列规则不同,RelativeLayout 显得更加随意一些,它可以通过相对定位的方式 ...
- TLogger一个D7可用的轻量级日志
今天调程序,要用到日志.XE7有Qlog,D7用什么 从网上找到了Logger,下载的原文是不支持D7的,不过也只是很少的地方不同,自己修改了下就可以用了 感谢原作者和红鱼的分享 unit Logge ...
- 【腾讯Bugly干货分享】美团大众点评 Hybrid 化建设
本文来自于腾讯Bugly公众号(weixinBugly),未经作者同意,请勿转载,原文地址:http://mp.weixin.qq.com/s/rNGD6SotKoO8frmxIU8-xw 本期 T ...
- Nova PhoneGap框架 第五章 文件结构
一个好的项目架构必然有着合理的文件结构,如果一个项目的文件组织混乱,那么可以断言一定是项目架构有问题. 合理的文件结构能够帮你更清晰的管理你的文件,并且当需要添加新的文件的时候,你的程序员很清楚应该加 ...
- 日志系统实战(一)—AOP静态注入
背景 近期在写日志系统,需要在运行时在函数内注入日志记录,并附带函数信息,这时就想到用Aop注入的方式. AOP分动态注入和静态注入两种注入的方式. 动态注入方式 利用Remoting的Context ...
- [ASP.NET MVC 小牛之路]05 - 使用 Ninject
在[ASP.NET MVC 小牛之路]系列上一篇文章(依赖注入(DI)和Ninject)的末尾提到了在ASP.NET MVC中使用Ninject要做的两件事情,续这篇文章之后,本文将用一个实际的示例来 ...
- 【Paddy】如何将物理表分割成动态数据表与静态数据表
前言 一般来说,物理表的增.删.改.查都受到数据量的制约,进而影响了性能. 很多情况下,你所负责的业务关键表中,每日变动的数据库与不变动的数据量比较,相差非常大. 这里我们将变动的数据称为动态数据,不 ...
- JVM字节码指令
invokevirtual 调用实例方法 invokespecial 调用父类构造,实例初始化方法,私有方法 dup 复制栈顶数值,并且复制值进栈,pop/pop2为栈顶值出栈 aload_0 加载第 ...