19/08/12 14:15:35 ERROR cluster.YarnScheduler: Lost executor 5 on worker01.hadoop.mobile.cn: Container killed by YARN for exceeding memory limits. 5 GB of 5 GB physical memory used. Consider boosting spark.yarn.executor.memoryOverhead.

在看这个问题之前,首先解释下下面参数的含义:

hadoop yarn-site.xml部分资源定义相关参数,更详细的内容可参考官网链接

yarn.nodemanager.resource.memory-mb //每个NodeManager可以供yarn调度(分配给container)的物理内存,单位MB
yarn.nodemanager.resource.cpu-vcores  //每个NodeManager可以供yarn调度(分配给container)的vcore个数

yarn.scheduler.maximum-allocation-mb //每个container能够申请到的最大内存
yarn.scheduler.minimum-allocation-mb //每个container能够申请到的最小内存,如果设置的值比该值小,默认就是该值
yarn.scheduler.increment-allocation-mb //container内存不够用时一次性加多少内存 单位MB。CDH默认512M
yarn.scheduler.minimum-allocation-vcores //每个container能够申请到的最小vcore个数,如果设置的值比该值小,默认就是该值
yarn.scheduler.maximum-allocation-vcores //每个container能够申请到的最大vcore个数。 

yarn.nodemanager.pmem-check-enabled //是否对contanier实施物理内存限制,会通过一个线程去监控container内存使用情况,超过了container的内存限制以后,就会被kill掉。
yarn.nodemanager.vmem-check-enabled //是否对container实施虚拟内存限制

  

executor-memory和executor-memory-overhead源码含义

EXECUTOR_MEMORY:
Amount of memory to use per executor process

EXECUTOR_MEMORY_OVERHEAD:
The amount of off-heap memory to be allocated per executor in cluster mode

spark.yarn.executor.memoryOverhead源代码实现:

  val MEMORY_OVERHEAD_FACTOR = 0.10
  val MEMORY_OVERHEAD_MIN = 384L
// Executor memory in MB.
protected val executorMemory = sparkConf.get(EXECUTOR_MEMORY).toInt
// Additional memory overhead.
protected val memoryOverhead: Int = sparkConf.get(EXECUTOR_MEMORY_OVERHEAD).getOrElse(
  math.max((MEMORY_OVERHEAD_FACTOR * executorMemory).toInt, MEMORY_OVERHEAD_MIN)).toInt

到这里,可能有的同学大概就明白了,比如设置了--executor-memory为2G,为什么报错时候是Container killed by YARN for exceeding memory limits. 2.5 GB of 2.5 GB physical memory used,2.5G从哪里来的?是这样,首先计算出memoryOverhead 默认值是max(2G*0.1,384),也就是384M,又根据上面的yarn.scheduler.increment-allocation-mb值,就会分配2G+512M大小的container...

好了,我们再看问题,从报错的描述上可以大概了解到,container超过了内存的限制从而被kill掉,从上面的参数yarn.nodemanager.pmem-check-enabled可以了解到该参数默认是true,也就是会由它来控制监控container的内存使用,所以第一步我们可以尝试关闭该参数看应用是否可以正常运行

调整一:设置yarn.nodemanager.pmem-check-enabled=false

结果:应用成功运行,但是关闭了对container内存的监控,虽然可以运行,但是明显没有实际性的处理问题,而且不可控的内存使用,对多租户的环境不友好

调整二:根据提示 Consider boosting spark.yarn.executor.memoryOverhead

但是什么是memoryOverhead呢? 如下图:

container内存使用情况的时线图:

尝试提升spark.yarn.executor.memoryOverhead参数值至1.5G,可以看到container预留了更多空间给 OS overhead,没有超过container的内存限制

不过很明显,我们是牺牲内存资源来换取应用稳定性。

但是真正的原因到底是什么呢?看下图:

每个任务都是通过NIO channel 去获取shuffle文件。并且所需的缓冲区是从OS overheads中分配的,这也就导致了os overhead越来越大,因此我们也可以通过减少并行度来减少同时运行的任务来尝试避免这样的问题。

调整三:降低参数--excutor-cores值

结果也可以成功运行,但是同样,我们是牺牲了应用的性能和cpu的利用率来换取应用稳定性。

最后,如果有同学单独调整以上参数应用仍然不可用的话,可以尝试上述多种方式同时使用,另外注意

  1.对于发生shuffle的算子,比如groupby,可以通过repartition提升并行度

  2.避免数据倾斜

Container killed by YARN for exceeding memory limits的更多相关文章

  1. Hive-Container killed by YARN for exceeding memory limits. 9.2 GB of 9 GB physical memory used. Consider boosting spark.yarn.executor.memoryOverhead.

    Caused by: org.apache.spark.SparkException: Job aborted due to stage failure: Task times, most recen ...

  2. hadoop的job执行在yarn中内存分配调节————Container [pid=108284,containerID=container_e19_1533108188813_12125_01_000002] is running beyond virtual memory limits. Current usage: 653.1 MB of 2 GB physical memory used

    实际遇到的真实问题,解决方法: 1.调整虚拟内存率yarn.nodemanager.vmem-pmem-ratio (这个hadoop默认是2.1) 2.调整map与reduce的在AM中的大小大于y ...

  3. Kafka:ZK+Kafka+Spark Streaming集群环境搭建(十三)kafka+spark streaming打包好的程序提交时提示虚拟内存不足(Container is running beyond virtual memory limits. Current usage: 119.5 MB of 1 GB physical memory used; 2.2 GB of 2.1 G)

    异常问题:Container is running beyond virtual memory limits. Current usage: 119.5 MB of 1 GB physical mem ...

  4. spark运行任务报错:Container [...] is running beyond physical memory limits. Current usage: 3.0 GB of 3 GB physical memory used; 5.0 GB of 6.3 GB virtual memory used. Killing container.

    spark版本:1.6.0 scala版本:2.10 报错日志: Application application_1562341921664_2123 failed 2 times due to AM ...

  5. [hadoop] - Container [xxxx] is running beyond physical/virtual memory limits.

    当运行mapreduce的时候,有时候会出现异常信息,提示物理内存或者虚拟内存超出限制,默认情况下:虚拟内存是物理内存的2.1倍.异常信息类似如下: Container [pid=13026,cont ...

  6. Container [pid=6263,containerID=container_1494900155967_0001_02_000001] is running beyond virtual memory limits

    以Spark-Client模式运行,Spark-Submit时出现了下面的错误: User: hadoop Name: Spark Pi Application Type: SPARK Applica ...

  7. hive: insert数据时Error during job, obtaining debugging information 以及beyond physical memory limits

    insert overwrite table canal_amt1...... 2014-10-09 10:40:27,368 Stage-1 map = 100%, reduce = 32%, Cu ...

  8. hadoop is running beyond virtual memory limits问题解决

    单机搭建了2.6.5的伪分布式集群,写了一个tf-idf计算程序,分词用的是结巴分词,使用standalone模式运行没有任何问题,切换到伪分布式模式运行一直报错: hadoop is running ...

  9. 运行hadoop的时候提示物理内存或虚拟内存溢出的解决方案running beyond physical memory或者beyond vitual memory limits

    当运行中出现Container is running beyond physical memory这个问题出现主要是因为物理内存不足导致的,在执行mapreduce的时候,每个map和reduce都有 ...

随机推荐

  1. Excel催化剂开源第37波-音视频文件元数据提取(分辨率,时长,采样率等)

    上一篇提到图片元信息Exif的提取,当然还有一类音视频文件,也同样存储着许多宝贵的元数据,那就开源到底呗,虽然自己找寻过程也是蛮艰辛坎坷的,大家看后有收获,只求多多传播下,让前人的工作可以更有价值. ...

  2. 推荐 2 款超牛逼、炫酷、实用的Docker管理工具!

    Docker技术的火热程度,想必每个互联网IT技术人员都能时时感受的到,的确,近些年,国内对于Docker容器技术的应用需求越来越强烈!! 人均年薪80万以上,docker到底是什么?为什么这么火? ...

  3. 【转】Spring事务详解

    1.事务的基本原理 Spring事务的本质其实就是数据库对事务的支持,使用JDBC的事务管理机制,就是利用java.sql.Connection对象完成对事务的提交,那在没有Spring帮我们管理事务 ...

  4. [小米OJ] 7. 第一个缺失正数

    思路: 参考这个思路 即:将每个数字放在对应的第几个位置上,比如1放在第1个位置上,2放在第2个位置上. 注意几个点:将每个数放在它正确的位置,前提是该数是正数,并且该数小于序列长度,并且交换的两个数 ...

  5. Js中关于内部方法、实例方法、原型方法、静态方法的个人见解。

    function foo(name){ this.name=name; // 实例方法 this.GetName=function(){ console.log("my name is &q ...

  6. 初学者的linux - 基本知识篇

    1.Linux系统结构 Linux是一套免费使用和自由传播的类Unix操作系统,它是一种倒树结构. “/”就是系统的顶级目录,称作根目录,“/bin,/root,/home,/etc.."这 ...

  7. DAO模型 架构

    这是项目的架构 dao层下面有一个平级的包 impl   //dao层  访问数据库. GradeDAOImpl 他继承了BaseDAO 实现了IGradeDAO接口 public class Gra ...

  8. laravel 模型查询总结

    1.Model::find($id);//查找主键为$id的数据 2.Model::find([$key1,$key2]);//使用双主键进行查找 3.Model::findOrFail($id);/ ...

  9. Jmeter CSV config使用

    1.添加线程组,自己给线程组命名 2.添加CSV data set config 如上,filename是文件的名字 新增.txt文件,将变量写在文件中,完成后,更名为.csv:变量之间用逗号隔开(第 ...

  10. 10分钟了解分布式CAP、BASE理论

    CAP理论 2000年7月,Eric Brewer教授提出CAP猜想:2年后,Seth Gilbert和Nancy Lynch从理论上证明了CAP:之后,CAP理论正式成为分布式计算领域的公认定理. ...