【单调队列优化dp】 分组

>>>>题目

【题目】

给定一行n个非负整数,现在你可以选择其中若干个数,但不能有连续k个数被选择。你的任务是使得选出的数字的和最大

【输入格式】

第一行两个整数 n,k,如题目描述
接下来一行n 个数,表示这个序列

【输出格式】

输出一行一个数,表示最大的和

【输入样例】

5 2
1 2 3 4 5

【输出样例】

12

【数据范围与约定】

对于20%的数据,保证1 <=n <=10。

对于40%的数据,保证1 <=n <=200。

对于60%的数据,保证1 <=n <=100000。

对于100%的数据,保证1 <=n <=2000000,1<=K<=n。

>>>>分析

因为题目给出非负整数,根据贪心,我们尽量多选择长度为k的序列

数据范围很大,暴力求每一段的和的做法肯定会T掉,那么考虑dp

题目涉及到求区间和,我们预处理出前缀和,用O(1)复杂度求出区间和

定义:dp[i]表示前i个人的最大收益,sum[i]表示前缀和

现在选的这一段区间和用sum[i]-sum[j]表示(i-k<=j<=i)

这段区间与  前一段长为k的区间  中间要空一个数(不能连续选k+1个数),于是我们固定i点,不断地枚举j点,找到和的最大值

因为sum求的是闭区间的前缀和 , sum[i]-sum[i]表示区间[ j+1 ,i ]的和,中间空的数就是j,再加上dp[j-1]就可以更新dp[i]的值

综上,我们可以得到状态转移方程

dp[i]=max( dp[j-1]+sum[i]-sum[j])  (i-k<=j<=i)

这里的max是对应每一个j点算出括号里的值,再求最大值

那么又怎么算最大值呢?总不能真的枚举j再找最大值吧?肯定不行,时间复杂度太高

但是你会突然发现

原方程可以拆分成 dp[i]=max(dp[j-1]-sum[j])+sum[i]

然后我们可以发现这个式子的变化与sum[i]无关,因为我们固定了i点,只是j点在变

那么我们考虑一个超棒的家伙——单调队列优化

(注意一下单调队列里面存的是下标)

定义f[j]=dp[j-1]-sum[j],将f[j]丢进单调队列里面,每次取出队首元素

扩展下一个点的时候,更新一下:f[i+1]=dp[i]-sum[i+1](和上面的式子是一样的),将它丢进单调队列里面就好啦

ヾ(๑╹◡╹)ノ"

>>>>代码

#include<bits/stdc++.h>
#define maxn 2000005
#define ll long long
using namespace std;
int head=,tail=,n,k;
ll dp[maxn],f[maxn],sum[maxn];
int a[maxn],q[maxn];
int read()
{
int x= ; char c=getchar() ;
while(c<''||c>'') c=getchar() ;
while(c>=''&&c<='') { x=x*+c-'', c=getchar() ; }
return x;
}
int main()
{
// freopen("group.in","r",stdin);
// freopen("group.out","w",stdout);
scanf("%d%d",&n,&k);
for(int i=;i<=n;i++)
{
a[i]=read();
sum[i]=sum[i-]+a[i];
}
for(int i=;i<=n;i++)
{
while(head<tail&&i-q[head]>k) head++;//如果队首的元素已经不在范围里,踢出队列
dp[i]=f[q[head]]+sum[i];//取出队首元素,更新dp[i]的值
f[i+]=dp[i]-sum[i+];//更新 f[i+1]
while(head<tail&&f[q[tail-]]<f[i+]) tail--;//维护单调队列,将小于f[i+1]的数都踢出去
q[tail++]=i+;
}
printf("%I64d",dp[n]);
return ;
}

>>>>总结

通过这道题目,我们还可以知道

对于一类dp,状态转移方程抽象为:dp[i]=max(f[j])+g[i]   (l[i]<=j<=r[i])

并且l[i]~r[i]单调不减时,我们都可以考虑用单调队列优化

步骤:踢出过时元素,更新dp值,新元素入队并且维护单调队列

那么就到这里啦!

完结撒花٩(๑❛ᴗ❛๑)۶

题目来源: 2019.2.19杨雅儒学长的考试题

【单调队列优化dp】 分组的更多相关文章

  1. 单调队列优化DP,多重背包

    单调队列优化DP:http://www.cnblogs.com/ka200812/archive/2012/07/11/2585950.html 单调队列优化多重背包:http://blog.csdn ...

  2. bzoj1855: [Scoi2010]股票交易--单调队列优化DP

    单调队列优化DP的模板题 不难列出DP方程: 对于买入的情况 由于dp[i][j]=max{dp[i-w-1][k]+k*Ap[i]-j*Ap[i]} AP[i]*j是固定的,在队列中维护dp[i-w ...

  3. hdu3401:单调队列优化dp

    第一个单调队列优化dp 写了半天,最后初始化搞错了还一直wa.. 题目大意: 炒股,总共 t 天,每天可以买入na[i]股,卖出nb[i]股,价钱分别为pa[i]和pb[i],最大同时拥有p股 且一次 ...

  4. Parade(单调队列优化dp)

    题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=2490 Parade Time Limit: 4000/2000 MS (Java/Others)    ...

  5. BZOJ_3831_[Poi2014]Little Bird_单调队列优化DP

    BZOJ_3831_[Poi2014]Little Bird_单调队列优化DP Description 有一排n棵树,第i棵树的高度是Di. MHY要从第一棵树到第n棵树去找他的妹子玩. 如果MHY在 ...

  6. [小明打联盟][斜率/单调队列 优化dp][背包]

    链接:https://ac.nowcoder.com/acm/problem/14553来源:牛客网 题目描述 小明很喜欢打游戏,现在已知一个新英雄即将推出,他同样拥有四个技能,其中三个小技能的释放时 ...

  7. 单调队列以及单调队列优化DP

    单调队列定义: 其实单调队列就是一种队列内的元素有单调性的队列,因为其单调性所以经常会被用来维护区间最值或者降低DP的维数已达到降维来减少空间及时间的目的. 单调队列的一般应用: 1.维护区间最值 2 ...

  8. BZOJ1791[Ioi2008]Island 岛屿 ——基环森林直径和+单调队列优化DP+树形DP

    题目描述 你将要游览一个有N个岛屿的公园.从每一个岛i出发,只建造一座桥.桥的长度以Li表示.公园内总共有N座桥.尽管每座桥由一个岛连到另一个岛,但每座桥均可以双向行走.同时,每一对这样的岛屿,都有一 ...

  9. P4381 [IOI2008]Island(基环树+单调队列优化dp)

    P4381 [IOI2008]Island 题意:求图中所有基环树的直径和 我们对每棵基环树分别计算答案. 首先我们先bfs找环(dfs易爆栈) 蓝后我们处理直径 直径不在环上,就在环上某点的子树上 ...

随机推荐

  1. vi / vim 命令集合

    vim的命令太多了,不常用就会忘记,所以我决定把vim的各种命令整理下来,包括vim的插入删除.光标移动.多窗口编辑.复制粘贴.查找替换.以及一些常用命令 删除操作 dd 删除当前行 ndd      ...

  2. mysql数据库设计三范式

    为了建立冗余较小.结构合理的数据库,设计数据库时必须遵循一定的规则.在关系型数据库中这种规则就称为范式.范式是符合某一种设计要求的总结.要想设计一个结构合理的关系型数据库,必须满足一定的范式. 在实际 ...

  3. Install rapyuta client on Ubuntu14.04

    # -Rapyuta-installation-in-Ubuntu14.04-LTS-Trusty-This gzip folder is a tested version which can ins ...

  4. 【JavaScript】for循环小练习

    1.输出1-100的和 var sum = 0; for(var i=1;i<=100;i++){ sum = sum + i; } document.write(sum); 2.输出1-100 ...

  5. TeamCity Agent安装

    1 docker安装 docker run -it -e SERVER_URL= \ -v /home/lishan/teamcity/conf:/data/teamcity_agent/conf \ ...

  6. Charles 抓包工具(新猿旺学习总结)

    Charles 抓包工具安装机操作 1.Charles 抓包工具是代理服务器工具,可以拦截数据,进行更改,返回数据,以实现前端后台的请求和响应数据的测试2.Charles 菜单介绍 Charles抓包 ...

  7. mtd-utils交叉编译安装

    一.获取源码并解压 存储于/home/zhangyi/work/psoc_ltp/tools-ltp-ddt中,解压后的源码存于上一层目录. 1.mtd-utils-2.0.0 wget ftp:// ...

  8. 推荐!PlayGround:可视化神经网络

    https://cloud.tencent.com/developer/news/190352 http://playground.tensorflow.org PlayGround是一个在线演示.实 ...

  9. Python母版使用

    设定base.html为母版,母版是页面的公共部分,可以减少代码冗余: 母版中变化的部分用:  {% block page-main % }  <!--page-mains是自己起的名称--&g ...

  10. Vue 组件&组件之间的通信 之 子组件向父组件传值

    子组件向父组件传值:子组件通过$.emit()方法以事件形式向父组件发送消息传值: 使用步骤: 定义组件:现有自定义组件com-a.com-b,com-a是com-b的父组件: 准备获取数据:父组件c ...