[再寄小读者之数学篇](2014-06-23 Gronwall-type inequality)
Suppose that $$\bex \cfrac{\rd f}{\rd t}+h\leq gf\quad (f,g,h\geq 0,\ t\in [0,T]). \eex$$ Then for $t\in [0,T]$, $$\bex f(t)+\int_0^t h(s)\rd s \leq f(0)\sez{ 1+\int_0^t g(s)\rd s\cdot \exp\sex{\int_0^t g(s)\rd s} }. \eex$$
[再寄小读者之数学篇](2014-06-23 Gronwall-type inequality)的更多相关文章
- [再寄小读者之数学篇](2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]反对称矩阵的组合)
(2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]反对称矩阵的组合) 设 ${\bf A},{\bf B}$ 都是反对称矩阵, 且 ${\b ...
- [再寄小读者之数学篇](2014-06-22 求导数 [中国科学技术大学2014年高等数学B考研试题])
设 $f(x)=x^2\ln(x+1)$, 求 $f^{(n)}(0)$. 解答: 利用 Leibniz 公式易知 $f'(0)=f''(0)=0$, $f^{(n)}(0)=(-1)^{n-3} n ...
- [再寄小读者之数学篇](2014-06-26 Logarithmical Sobolev inequality using BMO space)
$$\bex q>3\ra \sen{\n f}_{L^\infty} \leq C(q)\sez{ 1+\sen{\n f}_{BMO} \ln^\frac{1}{2}\sex{e+\sen{ ...
- [再寄小读者之数学篇](2014-06-26 Besov space estimates)
(1) $$\bex \sen{D^k f}_{\dot B^s_{p,q}}\sim \sen{f}_{\dot B^{s+k}_{p,q}}. \eex$$ (2) $$\beex \bea &a ...
- [再寄小读者之数学篇](2014-06-23 Bernstein's inequality)
$$\bex \supp \hat u\subset \sed{2^{j-2}\leq |\xi|\leq 2^j} \ra \cfrac{1}{C}2^{jk}\sen{f}_{L^p} \leq ...
- [再寄小读者之数学篇](2014-06-21 Beal-Kaot-Majda type logarithmic Sobolev inequality)
For $f\in H^s(\bbR^3)$ with $s>\cfrac{3}{2}$, we have $$\bex \sen{f}_{L^\infty}\leq C\sex{1+\sen{ ...
- [再寄小读者之数学篇](2014-06-20 求极限-H\"older 不等式的应用)
设非负严格增加函数 $f$ 在区间 $[a,b]$ 上连续, 有积分中值定理, 对于每个 $p>0$ 存在唯一的 $x_p\in (a,b)$, 使 $$\bex f^p(x_p)=\cfrac ...
- [再寄小读者之数学篇](2014-04-08 from 1297503521@qq.com $\sin x-x\cos x=0$ 的根的估计)
(2014-04-08 from 1297503521@qq.com) 设方程 $\sin x-x\cos x=0$ 在 $(0,+\infty)$ 中的第 $n$ 个解为 $x_n$. 证明: $$ ...
- [再寄小读者之数学篇](2014-12-04 $\left(1+\frac{1}{x}\right)^x>\frac{2ex}{2x+1},\forall\ x>0.$)
试证: $$\bex \left(1+\frac{1}{x}\right)^x>\frac{2ex}{2x+1},\forall\ x>0. \eex$$ 证明 (from Hanssch ...
- [再寄小读者之数学篇](2014-11-26 广义 Schur 分解定理)
设 $A,B\in \bbR^{n\times n}$ 的特征值都是实数, 则存在正交阵 $P,Q$ 使得 $PAQ$, $PBQ$ 为上三角阵.
随机推荐
- 通过指令码来判断Java代码的执行顺序(++问题与return和finally的问题)
问题 在<深入理解Java虚拟机>一书中遇到了如下代码: public int method() { int i; try { i = 1; return i; } catch (Exce ...
- vue-router(hash模式)常见问题以及解决方法
问题一:// 动态路由/detail/:id 问题:动态路由跳转的时候,页面是不刷新的,相信很多人都遇到了相同的问题解决方法:在全局的router-view组件上设置一个key值,此key值为一个时间 ...
- [Unity优化]批处理04:MaterialPropertyBlock
参考链接: https://blog.csdn.net/liweizhao/article/details/81937590 1.在场景中放一些Cube,赋予一个新材质,使用内置shader(Unli ...
- 搭建vue.js环境
一.安装Node.js (以下安装环境均为win10) 下载链接:https://nodejs.org/en/download/ 官网给出了两个版本,LTS和Curren.字面意思是推荐大多数用户使用 ...
- Docker Selenium
SeleniumHQ官方项目:https://github.com/seleniumHQ/docker-selenium 项目目前快速迭代中. Docker 一般叫docker容器,一个可爱的鲸鱼,上 ...
- Linux内存管理 (17)KSM
专题:Linux内存管理专题 关键词:KSM.匿名页面.COW.madvise .MERGEABLE.UNMERGEABLE. KSM是Kernel Samepage Merging的意思,用于合并内 ...
- 如何解决一个从SkylineGlobe5版本升级到7版本遇到的小问题
前些天,有朋友问,用Skyline5版本开发的WinForm程序,升级到7版本的时候,工程提示下面这样“创建组件AxHost失败”的错误,该如何解决呢? 后来经过百度搜索,找到了这样的答案, 测试发现 ...
- iOS 简易型标签的实现(UICollectionView)
https://blog.csdn.net/sinat_39362502/article/details/80900984 2018年07月03日 16:49:05 Recorder_MZou 阅读数 ...
- 乐观锁vs悲观锁
引言 为什么需要锁(并发控制) 在并发的环境中,会存在多个用户同时更新同一条数据,这时就会产生冲突. 冲突结果: 丢失更新:一个事务的更新覆盖了其它事务的更新结果,就是所谓的更新丢失. 脏读:当一个事 ...
- Data Governance
https://erwin.com/blog/data-preparation-mapping/