题意:给出n 个数 的序列 问 从n个数删去任意个数  删去的数后的序列b1 b2 b3 ......bk  k|bk

思路: 这种题目都有一个特性 就是取到bk 的时候 需要前面有个bk-1的序列前置  这个时候暴力会多一个n 的复杂度

所以只要定义一个状态(j)表示选择了j个数 这个时候就可以转移到j+1 了

定义状态:dp[i][j] 前i个数 选择了j个

dp[i][j]=dp[i-1][j-1]+dp[i-1][j] ( j|a[i] ) 这个 选+不选

dp[i][j]=dp[i-1][j]    ( j|a[i]不成立 )

这里无法用n^2的复杂度过 而 我们知道 一个数的因子数可以用sqrt(j)的时间求出来 但是j 和a[i]/j 两个因子的大小不确定 所以就会影响dp进程 因为dp要从j到j+1从小到大转移(因为二维开不下 需要滚动 不然可以随便顺序)

( 数的因子是很稀疏的 所以不会超时  )

 #include<bits/stdc++.h>
#define FOR(i,f_start,f_end) for(int i=f_start;i<=f_end;i++)
#define MS(arr,arr_value) memset(arr,arr_value,sizeof(arr))
#define F first
#define S second
#define pii pair<int ,int >
#define mkp make_pair
#define pb push_back
#define arr(zzz) array<ll,zzz>
#define ll long long
using namespace std;
const int maxn=1e6+;
const int inf=0x3f3f3f3f;
const int mod=1e9+;
int a[maxn];
int dp[+];
int main(){
int n;
scanf("%d",&n);
for(int i=;i<n;i++)scanf("%d",&a[i]);
ll ans=;
int p=;
dp[]=;
for(int i=;i<n;i++){
vector<int>v(sqrt(a[i]));
for(int j=;j*j<=a[i];j++){
if(a[i]%j==){
v.pb(j);
if(a[i]/j!=j)v.pb(a[i]/j);
}
}
sort(v.begin(),v.end(),[](int a,int b){return a>b;});
for(auto p:v){
dp[p]=(1ll*dp[p-]+dp[p])%mod;
}
}
for(int i=;i<=;i++)ans+=dp[i],ans%=mod;
cout<<ans<<endl;
return ;
}

C. Multiplicity 简单数论+dp(dp[i][j]=dp[i-1][j-1]+dp[i-1][j] 前面序列要满足才能构成后面序列)+sort的更多相关文章

  1. CF895C Square Subsets (组合数+状压DP+简单数论)

    题目大意:给你一个序列,你可以在序列中任选一个子序列,求子序列每一项的积是一个平方数的方案数. 1<=a[i]<=70 因为任何一个大于2的数都可以表示成几个质数的幂的乘积 所以我们预处理 ...

  2. 2019-2020 ICPC Asia Hong Kong Regional Contest J. Junior Mathematician 题解(数位dp)

    题目链接 题目大意 要你在[l,r]中找到有多少个数满足\(x\equiv f(x)(mod\; m)\) \(f(x)=\sum_{i=1}^{k-1} \sum_{j=i+1}^{k}d(x,i) ...

  3. 三十道DP练习(持续更新)(pw:DP)

    前言: 话说DP这种纯考思维的题目,总是让我很伤脑筋,一些特别简单的DP我都常常做不出来,所以革命从现在(2018-05-01)开始,努力多刷点DP的练习-. 1.顺序对齐(align) 时间:201 ...

  4. 插头DP讲解+[BZOJ1814]:Ural 1519 Formula 1(插头DP)

    1.什么是插头$DP$? 插头$DP$是$CDQ$大佬在$2008$年的论文中提出的,是基于状压$D$P的一种更高级的$DP$多用于处理联通问题(路径问题,简单回路问题,多回路问题,广义回路问题,生成 ...

  5. 2018.12.17 bzoj1406 : [AHOI2007]密码箱(简单数论)

    传送门 简单数论暴力题. 题目简述:要求求出所有满足x2≡1mod&ThinSpace;&ThinSpace;nx^2\equiv1 \mod nx2≡1modn且0≤x<n0\ ...

  6. Pairs Forming LCM (LightOJ - 1236)【简单数论】【质因数分解】【算术基本定理】(未完成)

    Pairs Forming LCM (LightOJ - 1236)[简单数论][质因数分解][算术基本定理](未完成) 标签: 入门讲座题解 数论 题目描述 Find the result of t ...

  7. Help Hanzo (LightOJ - 1197) 【简单数论】【筛区间质数】

    Help Hanzo (LightOJ - 1197) [简单数论][筛区间质数] 标签: 入门讲座题解 数论 题目描述 Amakusa, the evil spiritual leader has ...

  8. Aladdin and the Flying Carpet (LightOJ - 1341)【简单数论】【算术基本定理】【分解质因数】

    Aladdin and the Flying Carpet (LightOJ - 1341)[简单数论][算术基本定理][分解质因数](未完成) 标签:入门讲座题解 数论 题目描述 It's said ...

  9. Goldbach`s Conjecture(LightOJ - 1259)【简单数论】【筛法】

    Goldbach`s Conjecture(LightOJ - 1259)[简单数论][筛法] 标签: 入门讲座题解 数论 题目描述 Goldbach's conjecture is one of t ...

随机推荐

  1. 【代码笔记】Web-CSS-CSS Border(边框)

    一,效果图. 二,代码. <!DOCTYPE html> <html> <head> <meta charset="utf-8"> ...

  2. 如何解决angular不自动生成spec.ts文件

    "schematics":{   "@schematics/angular:component": {        "styleext": ...

  3. SAP 用户参数 ME_USE_GRID

    SAP 用户参数 ME_USE_GRID SAP的一些标准报表格式极其不友好,如果不做特殊参数设定,报表使用起来很不方便.我们可以通过设置user parameter的方式,改变一些报表的显示格式,让 ...

  4. IBGP默认的TTL值为255

    结论: 1.IBGP默认的TTL值为255 组网图: 抓包内容: 1.在AR1和AR2之间抓包,只显示BGP包,显示内容如下:

  5. MongoDB在Linux下常用优化设置

    MongoDB在Linux下常用优化设置 以下是一些MongoDB推荐的常用优化设置.在生产环境下选取合适的参数值,例如预读值和默认文件描述符数目等,会对系统性能有很大的影响. 1.关闭数据库文件的 ...

  6. Android远程桌面助手之系统兼容篇

    Android远程桌面助手理论上兼容Android4.4至Android8.1之间所有的原生安卓系统,其他第三方ROM,如MIUI.Flyme.EMUI和Smartisan OS等也都陆续测试过,目前 ...

  7. Android + https 实现 文件上传

    package com.example.wbdream.zigvine; import android.annotation.SuppressLint; import android.app.Acti ...

  8. 微信小程序转发微信小程序转发

    微信小程序转发涉及以下4个方法: 1.Page.onShareAppMessage({}) 设置右上角“转发”配置,及转发后回调函数返回 shareTicket 票据 2.wx.showSahreMe ...

  9. c/c++ 拷贝控制 右值与const引用

    拷贝控制 右值与const引用 背景:当一个函数的返回值是自定义类型时,调用侧用什么类型接收?? 1,如果自定义类型的拷贝构造函数的参数用const修饰了:可以用下面的方式接收. Test t2 = ...

  10. PHP实现表单提交发送邮件

    只需要三个文件就可以了: 注意: 文件自命名需修改表单提交url,包含的类文件名: HTML表单文件: <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML ...