There are nn players sitting at the card table. Each player has a favorite number. The favorite number of the jj-th player is fjfj.

There are k⋅nk⋅n cards on the table. Each card contains a single integer: the ii-th card contains number cici. Also, you are given a sequence h1,h2,…,hkh1,h2,…,hk. Its meaning will be explained below.

The players have to distribute all the cards in such a way that each of them will hold exactly kk cards. After all the cards are distributed, each player counts the number of cards he has that contains his favorite number. The joy level of a player equals htht if the player holds tt cards containing his favorite number. If a player gets no cards with his favorite number (i.e., t=0t=0), his joy level is 00.

Print the maximum possible total joy levels of the players after the cards are distributed. Note that the sequence h1,…,hkh1,…,hk is the same for all the players.

Input

The first line of input contains two integers nn and kk (1≤n≤500,1≤k≤101≤n≤500,1≤k≤10) — the number of players and the number of cards each player will get.

The second line contains k⋅nk⋅n integers c1,c2,…,ck⋅nc1,c2,…,ck⋅n (1≤ci≤1051≤ci≤105) — the numbers written on the cards.

The third line contains nn integers f1,f2,…,fnf1,f2,…,fn (1≤fj≤1051≤fj≤105) — the favorite numbers of the players.

The fourth line contains kk integers h1,h2,…,hkh1,h2,…,hk (1≤ht≤1051≤ht≤105), where htht is the joy level of a player if he gets exactly tt cards with his favorite number written on them. It is guaranteed that the condition ht−1<htht−1<ht holds for each t∈[2..k]t∈[2..k].

Output

Print one integer — the maximum possible total joy levels of the players among all possible card distributions.

Examples

Input
4 3
1 3 2 8 5 5 8 2 2 8 5 2
1 2 2 5
2 6 7
Output
21
Input
3 3
9 9 9 9 9 9 9 9 9
1 2 3
1 2 3
Output
0

Note

In the first example, one possible optimal card distribution is the following:

  • Player 11 gets cards with numbers [1,3,8][1,3,8];
  • Player 22 gets cards with numbers [2,2,8][2,2,8];
  • Player 33 gets cards with numbers [2,2,8][2,2,8];
  • Player 44 gets cards with numbers [5,5,5][5,5,5].

Thus, the answer is 2+6+6+7=212+6+6+7=21.

In the second example, no player can get a card with his favorite number. Thus, the answer is 00.

题意:

给你N个数的数组,还有一个数m,m一定是n的因子,。

现在你可以改变数组中的每一个数,使之n个数对m取模后的结果值的数量严格为n/m

让一个数+1的成本是1,问最小的改变成本是多少?

思路:

巧妙的运用了set的功能和贪心的思想。

先把0~m-1的所有数加入到set中,

然后扫一遍数组,对于每一个a[i],

x=a[i]%m

然后我们就要从set中找到那个让a[i]增加值最小的那个取模后的数,

如果x比set中所有的数大,那么我们必须让它加一点数然后变成%m后是set中最小数才可以成本最低。

否则我们需要用到set中的一个函数lower_bound()

这个函数的作用想必都知道,就说在set中找到第一个大于等于x的数。

注意函数返回的是一个set的迭代器,*iterator 才是取值。

然后把a[i]进行改变,最后输出答案。

细节见代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <iomanip>
#define ALL(x) (x).begin(), (x).end()
#define rt return
#define dll(x) scanf("%I64d",&x)
#define xll(x) printf("%I64d\n",x)
#define sz(a) int(a.size())
#define all(a) a.begin(), a.end()
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define gg(x) getInt(&x)
#define db(x) cout<<"== [ "<<x<<" ] =="<<endl;
using namespace std;
typedef long long ll;
ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
ll lcm(ll a,ll b){return a/gcd(a,b)*b;}
ll powmod(ll a,ll b,ll MOD){ll ans=;while(b){if(b%)ans=ans*a%MOD;a=a*a%MOD;b/=;}return ans;}
inline void getInt(int* p);
const int maxn=;
const int inf=0x3f3f3f3f;
/*** TEMPLATE CODE * * STARTS HERE ***/
ll n,m;
ll a[maxn];
ll b[maxn];
ll c[maxn];
int main()
{
//freopen("D:\\common_text\\code_stream\\in.txt","r",stdin);
//freopen("D:\\common_text\\code_stream\\out.txt","w",stdout);
gbtb;
cin>>n>>m;
ll num=n/m;
repd(i,,n)
{
cin>>a[i];
}
set<int> st;
repd(i,,m-)
{
st.insert(i);
}
ll x;
ll y;
ll ans=0ll;
repd(i,,n)
{
x=a[i]%m;
if(x>(*st.rbegin()))
{
y=*st.begin();
}else
{
y=*st.lower_bound(x);
}
b[y]++;
if(b[y]==num)
{
st.erase(y);
}
a[i]+=((y-x)+m)%m;
ans+=((y-x)+m)%m;
}
cout<<ans<<endl;
repd(i,,n)
{
cout<<a[i]<<" ";
}
cout<<endl;
return ;
} inline void getInt(int* p) {
char ch;
do {
ch = getchar();
} while (ch == ' ' || ch == '\n');
if (ch == '-') {
*p = -(getchar() - '');
while ((ch = getchar()) >= '' && ch <= '') {
*p = *p * - ch + '';
}
}
else {
*p = ch - '';
while ((ch = getchar()) >= '' && ch <= '') {
*p = *p * + ch - '';
}
}
}

Cards and Joy CodeForces - 999F (贪心+set)的更多相关文章

  1. Codeforces Round #490 (Div. 3) F - Cards and Joy

    F - Cards and Joy 思路:比较容易想到dp,直接dp感觉有点难,我们发现对于每一种数字要处理的情况都相同就是有 i 张牌 要给 j 个人分, 那么我们定义dp[ i ][ j ]表示 ...

  2. F. Cards and Joy

    F. Cards and Joy 题目大意: 给你n个人,每一个人恰好选k张牌. 第一行是 n 和 k 第二行有n*k个数,代表有n*k张牌,每张牌上的数字 第三行有n个数,代表第i个人喜欢的数字 第 ...

  3. Codeforces 999F Cards and Joy(二维DP)

    题目链接:http://codeforces.com/problemset/problem/999/F 题目大意:有n个人,n*k张卡牌,每个人会发到k张卡牌,每个人都有一种喜欢的卡牌f[i],当一个 ...

  4. Codeforces Round #490 (Div. 3) :F. Cards and Joy(组合背包)

    题目连接:http://codeforces.com/contest/999/problem/F 解题心得: 题意说的很复杂,就是n个人玩游戏,每个人可以得到k张卡片,每个卡片上有一个数字,每个人有一 ...

  5. 999F Cards and Joy

    传送门 题目大意 有n个人n*m张牌,每个人分m张牌.每个人有一个自己喜欢的数值,如果他的牌中有x张数值等于这个值则他的高兴度为L[x],求怎样分配牌可以使得所有人的总高兴度最大. 分析 我们发现每一 ...

  6. CodeForces - 893D 贪心

    http://codeforces.com/problemset/problem/893/D 题意 Recenlty Luba有一张信用卡可用,一开始金额为0,每天早上可以去充任意数量的钱.到了晚上, ...

  7. Codeforces Round #424 (Div. 2, rated, based on VK Cup Finals) Problem D (Codeforces 831D) - 贪心 - 二分答案 - 动态规划

    There are n people and k keys on a straight line. Every person wants to get to the office which is l ...

  8. Codeforces Round #423 (Div. 2, rated, based on VK Cup Finals) Problem D (Codeforces 828D) - 贪心

    Arkady needs your help again! This time he decided to build his own high-speed Internet exchange poi ...

  9. CodeForces - 93B(贪心+vector<pair<int,double> >+double 的精度操作

    题目链接:http://codeforces.com/problemset/problem/93/B B. End of Exams time limit per test 1 second memo ...

随机推荐

  1. 柯里化与python装饰器

    当需要对已定义的函数进行功能扩展但又不能去改变原有函数时就会用到装饰器.装饰器在python中是非常常用且重要的功能,是一种python的语法糖. 在理解装饰器之前先看下面的加法函数: def add ...

  2. 多线程Thread,线程池ThreadPool

    首先我们先增加一个公用方法DoSomethingLong(string name),这个方法下面的举例中都有可能用到 #region Private Method /// <summary> ...

  3. Understanding ROS Services and Parameters

    service是nodes之间通信的一种方式,允许nodes send a request and recieve a response. rosservice rosparam roservice ...

  4. 大前端的自动化工厂(5)—— 基于Karma+Mocha+Chai的单元测试和接口测试

    一. 前端自动化测试 大多数前端开发者对测试相关的知识是比较缺乏的,一来是开发节奏很快,来不及写,另一方面团队里也配备了"人肉测试机",完全没必要自己来.但随着项目体量的增大,许多 ...

  5. 杭电ACM2006--求奇数的乘积

    求奇数的乘积 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Subm ...

  6. .NET Core[MVC] 利用特性捕捉异常

    声明:本方式适用于MVC.本代码只适用于.NET Core MVC. 先创建一个类继承ExceptionFilterAttribute这个抽象类,并override它的方法OnException. 代 ...

  7. Sqlserver 2008R2设置数据库只对特定用户可见

    REVOKE VIEW ANY DATABASE TO [public] --这个是取消数据库公开的权限,也就是除了sa角色外任何人都不能查看数据库 Sa可以查看所有数据库, 新建一个名称为test的 ...

  8. 【微服务目录】.NET Core 微服务介绍

    介绍: 写这篇文章有多方面的原因,第一当然是为了以后自己可以随时翻阅,第二也算是一种积累吧.因为有些东西你弄个之后,过了很长时间不用,可能会有些忘却,但是你因为以前弄个吧,有不是那种小白,需要去找示例 ...

  9. java的ArrayList源码摘要

    ArrayList本质上是一组对象数组,ArrayList有三种构造方法 1.指定长度创建ArrayList,2.默认长度为10创建.3,用旧的集合创建一个ArrayList. 对ArrayList的 ...

  10. tf.nn.conv2d。卷积函数

    tf.nn.conv2d是TensorFlow里面实现卷积的函数,参考文档对它的介绍并不是很详细,实际上这是搭建卷积神经网络比较核心的一个方法,非常重要 tf.nn.conv2d(input, fil ...