【线段树 集合hash】bzoj4373: 算术天才⑨与等差数列
hash大法好(@ARZhu);大数相乘及时取模真的是件麻烦事情
Description
算术天才⑨非常喜欢和等差数列玩耍。
有一天,他给了你一个长度为n的序列,其中第i个数为a[i]。
他想考考你,每次他会给出询问l,r,k,问区间[l,r]内的数从小到大排序后能否形成公差为k的等差数列。
当然,他还会不断修改其中的某一项。
为了不被他鄙视,你必须要快速并正确地回答完所有问题。
注意:只有一个数的数列也是等差数列。
Input
第一行包含两个正整数n,m(1<=n,m<=300000),分别表示序列的长度和操作的次数。
第二行包含n个整数,依次表示序列中的每个数a[i](0<=a[i]<=10^9)。
接下来m行,每行一开始为一个数op,
若op=1,则接下来两个整数x,y(1<=x<=n,0<=y<=10^9),表示把a[x]修改为y。
若op=2,则接下来三个整数l,r,k(1<=l<=r<=n,0<=k<=10^9),表示一个询问。
在本题中,x,y,l,r,k都是经过加密的,都需要异或你之前输出的Yes的个数来进行解密。
Output
输出若干行,对于每个询问,如果可以形成等差数列,那么输出Yes,否则输出No。
Sample Input
1 3 2 5 6
2 1 5 1
1 5 4
2 1 5 1
Sample Output
Yes
题目分析
动态询问区间是否为「等差数列」。出题人用线段树维护了区间最小;区间gcd;区间……等等一系列标记。
然而HZQ给出了一个吊打出题人的做法:线段树hash。
注意到询问的区间可以视作集合形式,与顺序无关。于是便可以快速地集合hash。
具体来说用线段树维护区间最小值(用于寻找等差数列首项);区间立方和(由费马大定理得立方和不容易被卡;不过在这题出题人并没有恶意卡平方哈希)
问题就在于如何快速验证;换句话说就是计算询问的等差数列的hash值$x^3+(x+k)^3+(x+2*k)^3+...+(x+(n-1)*k)^3$其中$n$为序列长度
把式子按照指数展开,就可以愉快地$O(1)$计算数列答案了。我才没有暴力展开算了1h什么都没算出来
#include<bits/stdc++.h>
typedef long long ll;
const ll MO = 1e9+;
const int INF = 2e9;
const int maxn = ; int n,m,preans;
ll mn[maxn<<],f[maxn<<]; int read()
{
char ch = getchar();
int num = ;
bool fl = ;
for (; !isdigit(ch); ch = getchar())
if (ch=='-') fl = ;
for (; isdigit(ch); ch = getchar())
num = (num<<)+(num<<)+ch-;
if (fl) num = -num;
return num;
}
ll qmi(ll a, ll b)
{
ll ret = ;
while (b)
{
if (b&) ret = ret*a%MO;
a = a*a%MO, b >>= ;
}
return ret;
}
void pushup(int rt)
{
mn[rt] = std::min(mn[rt<<], mn[rt<<|]);
f[rt] = (f[rt<<]+f[rt<<|])%MO;
}
void build(int rt, int l, int r)
{
mn[rt] = INF;
if (l==r){
mn[rt] = f[rt] = read();
f[rt] = 1ll*f[rt]*f[rt]%MO*f[rt]%MO;
return;
}
int mid = (l+r)>>;
build(rt<<, l, mid), build(rt<<|, mid+, r);
pushup(rt);
}
void update(int rt, int l, int r, int pos, ll c)
{
if (l==r){
f[rt] = c*c%MO*c%MO, mn[rt] = c;
return;
}
int mid = (l+r)>>;
if (pos <= mid) update(rt<<, l, mid, pos, c);
else update(rt<<|, mid+, r, pos, c);
pushup(rt);
}
int queryMn(int rt, int L, int R, int l, int r)
{
if (L <= l&&r <= R) return mn[rt];
int mid = (l+r)>>, ret = INF;
if (L <= mid)
ret = queryMn(rt<<, L, R, l, mid);
if (R > mid) ret = std::min(ret, queryMn(rt<<|, L, R, mid+, r));
return ret;
}
ll query(int rt, int L, int R, int l, int r)
{
if (L <= l&&r <= R) return f[rt]%MO;
int mid = (l+r)>>;
ll ret = ;
if (L <= mid) ret = query(rt<<, L, R, l, mid);
if (R > mid) ret += query(rt<<|, L, R, mid+, r);
return ret%MO;
}
ll calc(ll x, ll n, ll k)
{
ll ret = n*x%MO*x%MO*x%MO, pos = 1ll*n*(n-)%MO*qmi(, MO-)%MO;
ret += ((k*k%MO*k%MO*pos%MO*pos%MO+3*k%MO*x%MO*x%MO*pos%MO)%MO+k*x%MO*k%MO*(2*n-1)%MO*pos%MO)%MO;
return ret%MO; //时刻记得要取模!
}
int main()
{
// freopen("4373.in","r",stdin);
// freopen("4373.out","w",stdout);
n = read(), m = read();
build(, , n);
for (int i=; i<=m; i++)
{
int opt = read();
if (opt==){
int x = read()^preans, y = read()^preans;
update(, , n, x, y);
}else{
int l = read()^preans, r = read()^preans, k = read()^preans, lens = (r-l+);
int st = queryMn(, l, r, , n);
ll sum = query(, l, r, , n);
if (calc(st, lens, k)==sum) preans++, puts("Yes");
else puts("No");
}
}
return ;
}
END
【线段树 集合hash】bzoj4373: 算术天才⑨与等差数列的更多相关文章
- [线段树]洛谷P5278 算术天才⑨与等差数列
题目描述 算术天才⑨非常喜欢和等差数列玩耍. 有一天,他给了你一个长度为n的序列,其中第i个数为a[i]. 他想考考你,每次他会给出询问l,r,k,问区间[l,r]内的数从小到大排序后能否形成公差为k ...
- BZOJ4373 算术天才⑨与等差数列 【线段树】*
BZOJ4373 算术天才⑨与等差数列 Description 算术天才⑨非常喜欢和等差数列玩耍. 有一天,他给了你一个长度为n的序列,其中第i个数为a[i]. 他想考考你,每次他会给出询问l,r,k ...
- [BZOJ4373]算术天才⑨与等差数列(线段树)
[l,r]中所有数排序后能构成公差为k的等差数列,当且仅当: 1.区间中最大数-最小数=k*(r-l) 2.k能整除区间中任意两个相邻数之差,即k | gcd(a[l+1]-a[l],a[l+2]-a ...
- BZOJ4373 算术天才⑨与等差数列(线段树)
看上去很难维护,考虑找一些必要条件.首先显然最大值-最小值=k*(r-l).然后区间内的数需要模k同余.最后区间内的数两两不同(k=0除外).冷静一下可以发现这些条件组合起来就是充分的了. 考虑怎么维 ...
- bzoj4373 算术天才⑨与等差数列——线段树+set
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4373 一个区间有以 k 为公差的数列,有3个条件: 1.区间 mx - mn = (r-l) ...
- BZOJ4373 : 算术天才⑨与等差数列
设$pre[i]$表示第$i$个数上一次出现的位置,$d[i]=abs(a[i]-a[i+1])$. 用线段树维护区间内$a$的最小值.最大值,$pre$的最大值以及$d$的$\gcd$. 对于询问$ ...
- BZOJ4373 算术天才与等差数列 题解
题目大意: 一个长度为n的序列,其中第i个数为a[i].修改一个点的值询问区间[l,r]内的数从小到大排序后能否形成公差为k的等差数列. 思路: 1.一段区间符合要求满足:(1)区间中的max-min ...
- BZOJ4373: 算术天才⑨与等差数列(线段树 hash?)
题意 题目链接 Sol 正经做法不会,听lxl讲了一种很神奇的方法 我们考虑如果满足条件,那么需要具备什么条件 设mx为询问区间最大值,mn为询问区间最小值 mx - mn = (r - l) * k ...
- 【BZOJ4373】算术天才⑨与等差数列 线段树+set
[BZOJ4373]算术天才⑨与等差数列 Description 算术天才⑨非常喜欢和等差数列玩耍.有一天,他给了你一个长度为n的序列,其中第i个数为a[i].他想考考你,每次他会给出询问l,r,k, ...
随机推荐
- Java并发编程,互斥同步和线程之间的协作
互斥同步和线程之间的协作 互斥同步 Java 提供了两种锁机制来控制多个线程对共享资源的互斥访问,第一个是 JVM 实现的 synchronized,而另一个是 JDK 实现的 ReentrantLo ...
- [NOIP2014]无线网站发射器选址
Description 随着智能手机的日益普及,人们对无线网的需求日益增大.某城市决定对城市内的公共场所覆盖无线网.假设该城市的布局为由严格平行的129条东西向街道和129条南北向街道所形成的网格状, ...
- Java程序员都应该去使用一下这款强大的国产工具类库
这不是标题党,今天给大家推荐一个很棒的国产工具类库:Hutool.可能有很多朋友已经知道这个类库了,甚至在已经在使用了,如果你还没有使用过,那不妨去尝试一下,我们项目组目前也在用这个.这篇文章来简单介 ...
- CentOS7-MySQL8安装-使用yum库安装
# Enable to use MySQL 5.5 [mysql55-community] name=MySQL 5.5 Community Server baseurl/$basearch/ ena ...
- laravel之null替换空字符串中间件
在laravel写接口的时候免不了数据库中保存null,可用诸如设置ORM的访问器或以下方法处理 $goods->name?$goods->name:''; 其实可以利用路由中间件,在需要 ...
- 洛谷P1896||bzoj1087 [SCOI2005]互不侵犯
bzoj1087 洛谷P1896 想了很久,太久没做状压都已经不会了... 状压每一行就好了 #include<cstdio> #include<algorithm> #inc ...
- CentOS7下使用Docker容器化.net Core 2.2
一.使用 yum 安装(CentOS 7下) Docker 要求 CentOS 系统的内核版本高于 3.10 ,查看本页面的前提条件来验证你的CentOS 版本是否支持 Docker . 通过 una ...
- Spring的ioc(DI)复习概念和原理简介
IOC的好处 ioc或者说di的概念很显然了,反转控制和依赖注入,那本来直接new就行的东西,为什么要搞这么复杂呢?? 开发维护方便,高层设计不用依赖底层的,不然底层一个类改下构造器,高层就全要改,因 ...
- 542 01 Matrix 01 矩阵
给定一个由 0 和 1 组成的矩阵,找出每个元素到最近的 0 的距离.两个相邻元素间的距离为 1 .示例 1:输入:0 0 00 1 00 0 0输出:0 0 00 1 00 0 0 示例 2:输入: ...
- css未知宽度水平居中整理
1.text-align 兼容性很好 .wp {text-align: center;} .test {display: inline;} <ul class="wp"> ...