Design a data structure that supports all following operations in average O(1) time.

Note: Duplicate elements are allowed.

  1. insert(val): Inserts an item val to the collection.
  2. remove(val): Removes an item val from the collection if present.
  3. getRandom: Returns a random element from current collection of elements. The probability of each element being returned is linearly related to the number of same value the collection contains.

Example:

// Init an empty collection.
RandomizedCollection collection = new RandomizedCollection(); // Inserts 1 to the collection. Returns true as the collection did not contain 1.
collection.insert(1); // Inserts another 1 to the collection. Returns false as the collection contained 1. Collection now contains [1,1].
collection.insert(1); // Inserts 2 to the collection, returns true. Collection now contains [1,1,2].
collection.insert(2); // getRandom should return 1 with the probability 2/3, and returns 2 with the probability 1/3.
collection.getRandom(); // Removes 1 from the collection, returns true. Collection now contains [1,2].
collection.remove(1); // getRandom should return 1 and 2 both equally likely.
collection.getRandom();

Approach #1: C++.

class RandomizedCollection {
public:
/** Initialize your data structure here. */
RandomizedCollection() { } /** Inserts a value to the collection. Returns true if the collection did not already contain the specified element. */
bool insert(int val) {
auto result = m.find(val) == m.end(); m[val].push_back(nums.size());
nums.push_back(pair<int, int>(val, m[val].size() - 1)); return result;
} /** Removes a value from the collection. Returns true if the collection contained the specified element. */
bool remove(int val) {
if (!m.count(val)) return false;
else {
auto last = nums.back();
m[last.first][last.second] = m[val].back();
nums[m[val].back()] = last;
m[val].pop_back();
if (m[val].empty()) m.erase(val);
nums.pop_back();
return true;
}
} /** Get a random element from the collection. */
int getRandom() {
return nums[rand() % nums.size()].first;
}
private:
vector<pair<int, int>> nums;
unordered_map<int, vector<int>> m;
}; /**
* Your RandomizedCollection object will be instantiated and called as such:
* RandomizedCollection obj = new RandomizedCollection();
* bool param_1 = obj.insert(val);
* bool param_2 = obj.remove(val);
* int param_3 = obj.getRandom();
*/

  

In this solution we use vector<pair<int, int>> nums to resoter the numbers in the set,  using the unordered_map<int, vector<int>> to restore the position of the number.

Runtime: 36 ms, faster than 82.83% of C++ online submissions for Insert Delete GetRandom O(1) - Duplicates allowed.

381. Insert Delete GetRandom O(1) - Duplicates allowed的更多相关文章

  1. leetcode 380. Insert Delete GetRandom O(1) 、381. Insert Delete GetRandom O(1) - Duplicates allowed

    380. Insert Delete GetRandom O(1) 实现插入.删除.获得随机数功能,且时间复杂度都在O(1).实际上在插入.删除两个功能中都包含了查找功能,当然查找也必须是O(1). ...

  2. [LeetCode] 381. Insert Delete GetRandom O(1) - Duplicates allowed 常数时间内插入删除和获得随机数 - 允许重复

    Design a data structure that supports all following operations in average O(1) time. Note: Duplicate ...

  3. [LeetCode] 381. Insert Delete GetRandom O(1) - Duplicates allowed 插入删除和获得随机数O(1)时间 - 允许重复

    Design a data structure that supports all following operations in average O(1) time. Note: Duplicate ...

  4. LeetCode 381. Insert Delete GetRandom O(1) - Duplicates allowed

    原题链接在这里:https://leetcode.com/problems/insert-delete-getrandom-o1-duplicates-allowed/?tab=Description ...

  5. LeetCode 381. Insert Delete GetRandom O(1) - Duplicates allowed O(1) 时间插入、删除和获取随机元素 - 允许重复(C++/Java)

    题目: Design a data structure that supports all following operations in averageO(1) time. Note: Duplic ...

  6. LeetCode 381. Insert Delete GetRandom O(1) - Duplicates allowed (插入删除和获得随机数 常数时间 允许重复项)

    Design a data structure that supports all following operations in average O(1) time. Note: Duplicate ...

  7. [leetcode]381. Insert Delete GetRandom O(1) - Duplicates allowed常数时间插入删除取随机值

    Design a data structure that supports all following operations in average O(1) time. Note: Duplicate ...

  8. 381. Insert Delete GetRandom O(1) - Duplicates allowed允许重复的设计1数据结构

    [抄题]: Design a data structure that supports all following operations in average O(1) time. Note: Dup ...

  9. 381 Insert Delete GetRandom O(1) - Duplicates allowed O(1) 时间插入、删除和获取随机元素 - 允许重复

    设计一个支持在平均 时间复杂度 O(1) 下, 执行以下操作的数据结构.注意: 允许出现重复元素.    insert(val):向集合中插入元素 val.    remove(val):当 val ...

随机推荐

  1. 物联网网络编程和web编程

    本文是基于嵌入式物联网研发project师的视觉对网络编程和web编程进行阐述. 对于专注J2EE后端服务开发的同学来说,这篇文章可能略微简单.可是网络编程和web编程对于绝大部分嵌入式物联网proj ...

  2. 嵌入式开发之cgic库---cgi库的使用

    很幸运!用C语言写CGI程序还可以有比较简单的方式,那就是我们可以借助使用第三方库CGIC(CGIC是一个功能比较强大的支持CGI开发的标准C库,并支持Linux, Unix 和Windows等多操作 ...

  3. IIS配置MVC网站

    我自己随便写了个MVC网站,能够 在vs2010里直接运行.但是加到IIS里之后却显示403.14错误,说是服务器没有启动“目录浏览”或没指定默认的文件. 当然,我没有必要启动“目录浏览”,又因为MV ...

  4. EF架构~终于自己架构了一个相对完整的EF方案

    EF4.1学了有段时间了,没有静下来好好研究它的架构,今天有空正好把它的架构及数据操作这段拿出来,希望给大家带来帮助,对我自己也是一种总结:P 从图中可以看到,我们用的是MVC3进行程序开发的,哈哈, ...

  5. spring2实现定时任务的一种方式

    1. 在项目中放入Spring的jar包 2. applicationContext.xml的<beans xmlns>部分,添加context相关内容: <beans xmlns= ...

  6. EasyDarwin开源流媒体服务器gettimeofday性能优化(3000万/秒次优化至8000万次/秒)

    -本文由EasyDarwin开源团队成员贡献 一.问题描述 Easydarwin中大量使用gettimeofday来获取系统时间,对系统性能造成了一定的影响.我们来做个测试: While(1) { G ...

  7. photoswipe 实现图片的单击放大

    1.项目结构 2.HTML 代码 <%@ Page Language="C#" AutoEventWireup="true" CodeBehind=&qu ...

  8. Redis persistence demystified

    https://redis.io/topics/persistence http://oldblog.antirez.com/post/redis-persistence-demystified.ht ...

  9. 阿里Java开发手册学习 3 MYSQL规约

    @import url(http://i.cnblogs.com/Load.ashx?type=style&file=SyntaxHighlighter.css);@import url(/c ...

  10. Android Weekly Notes Issue #240

    Android Weekly Issue #240 January 15th, 2017 Android Weekly Issue #240 Hello, 各位亲, 从本篇笔记开始, 以后并不包含An ...