题意:

Kiana最近沉迷于一款神奇的游戏无法自拔。

简单来说,这款游戏是在一个平面上进行的。

有一架弹弓位于(0,0)处,每次Kiana可以用它向第一象限发射一只红色的小鸟,小鸟们的飞行轨迹均为形如y=ax^2+bx的曲线,其中a,b是Kiana指定的参数,且必须满足a<0。

当小鸟落回地面(即x轴)时,它就会瞬间消失。

在游戏的某个关卡里,平面的第一象限中有n只绿色的小猪,其中第i只小猪所在的坐标为(xi,yi)。

如果某只小鸟的飞行轨迹经过了(xi,yi),那么第i只小猪就会被消灭掉,同时小鸟将会沿着原先的轨迹继续飞行;

如果一只小鸟的飞行轨迹没有经过(xi,yi),那么这只小鸟飞行的全过程就不会对第i只小猪产生任何影响。

例如,若两只小猪分别位于(1,3)和(3,3),Kiana可以选择发射一只飞行轨迹为y=-x^2+4x的小鸟,这样两只小猪就会被这只小鸟一起消灭。

而这个游戏的目的,就是通过发射小鸟消灭所有的小猪。

这款神奇游戏的每个关卡对Kiana来说都很难,所以Kiana还输入了一些神秘的指令,使得自己能更轻松地完成这个游戏。这些指令将在【输入格式】中详述。

假设这款游戏一共有T个关卡,现在Kiana想知道,对于每一个关卡,至少需要发射多少只小鸟才能消灭所有的小猪。由于她不会算,所以希望由你告诉她。

保证1<=n<=18,0<=m<=2,0<xi,yi<10,输入中的实数均保留到小数点后两位。

思路:状压DP,放在往年应该是T2的难度,但考场上写的爆搜拿了85,想到正解但并没有写

dp[sta]表示已经打倒的猪的状态是sta,为了节省转移时间默认下一个打第一只没有打的猪

判a<0和某点是否在抛物线上写法要注意,虽然联赛并没有故意卡精

 var dp:array[..]of longint;
f:array[..,..]of longint;
x,y:array[..]of double;
cas,v,n,m,i,j,k,sta,l:longint;
a,b,t:double; function min(x,y:longint):longint;
begin
if x<y then exit(x);
exit(y);
end; begin
//assign(input,'angrybirds.in'); reset(input);
//assign(output,'angrybirds.out'); rewrite(output);
readln(cas);
for v:= to cas do
begin
readln(n,m);
for i:= to n do readln(x[i],y[i]);
for i:= to (<<n)- do
begin
k:=i; dp[i]:=;
while k> do
begin
if k and = then inc(dp[i]);
k:=k>>;
end;
end;
for i:= to n do
begin
f[i,i]:=<<(i-);
for j:=i+ to n do
begin
f[i,j]:=;
if abs(x[j]-x[i])<=1e-8 then continue;
b:=(y[i]*x[j]*x[j]-y[j]*x[i]*x[i])/(x[i]*x[j]*(x[j]-x[i]));
a:=(y[i]-b*x[i])/(x[i]*x[i]);
if a<-(1e-8) then
begin
f[i,j]:=<<(i-)+<<(j-);
for k:=j+ to n do
begin
t:=a*x[k]*x[k]+b*x[k];
if abs(t-y[k])<=1e-8 then f[i,j]:=f[i,j] or (<<(k-));
end;
end;
end;
end;
for sta:= to (<<n)- do
begin
k:=;
for j:= to n do
if sta and (<<(j-))= then begin k:=j; break; end;
if k= then break;
for l:=k to n do dp[sta or f[k,l]]:=min(dp[sta or f[k,l]],dp[sta]+);
end; writeln(dp[(<<n)-]);
end;
//close(input);
//close(output);
end.

【NOIP2016】愤怒的小鸟(状压DP)的更多相关文章

  1. NOIP2016愤怒的小鸟 [状压dp]

    愤怒的小鸟 题目描述 Kiana 最近沉迷于一款神奇的游戏无法自拔. 简单来说,这款游戏是在一个平面上进行的. 有一架弹弓位于 (0,0) 处,每次 Kiana 可以用它向第一象限发射一只红色的小鸟, ...

  2. luogu2831 [NOIp2016]愤怒的小鸟 (状压dp)

    由范围可以想到状压dp 两个点(再加上原点)是可以确定一个抛物线的,除非它们解出来a>=0,在本题中是不合法的 这样的话,我们可以预处理出由任意两个点确定的抛物线所经过的所有的点(要特别规定一下 ...

  3. [noip2016]愤怒的小鸟<状压dp+暴搜>

    题目链接:https://vijos.org/p/2008 现在回过头去看去年的考试题,发现都不是太难,至少每道题都有头绪了... 这道题的数据范围是18,这么小,直接暴力呗,跑个暴搜就完了,时间也就 ...

  4. [Luogu P2831] 愤怒的小鸟 (状压DP)

    题面: 传送门:https://www.luogu.org/problemnew/show/P2831 Solution 首先,我们可以先康一康题目的数据范围:n<=18,应该是状压或者是搜索. ...

  5. 洛谷P2831 愤怒的小鸟(状压dp)

    题意 题目链接 Sol 这题....我样例没过就A了??..算了,就当是样例卡精度吧.. 直接状压dp一下,\(f[sta]\)表示干掉\(sta\)这个集合里面的鸟的最小操作数 转移的时候判断一下一 ...

  6. NOIP2016Day2T3愤怒的小鸟(状压dp) O(2^n*n^2)再优化

    看这范围都知道是状压吧... 题目大意就不说了嘿嘿嘿 网上流传的写法复杂度大都是O(2^n*n^2),这个复杂度虽然官方数据可以过,但是在洛谷上会TLE[百度搜出来前几个博客的代码交上去都TLE了], ...

  7. 【题解】P2831 愤怒的小鸟 - 状压dp

    P2831愤怒的小鸟 题目描述 \(Kiana\) 最近沉迷于一款神奇的游戏无法自拔. 简单来说,这款游戏是在一个平面上进行的. 有一架弹弓位于 \((0,0)\) 处,每次 \(Kiana\) 可以 ...

  8. P2831 愤怒的小鸟 状压dp

    这个题主要是预处理比较复杂,先枚举打每只鸟用的抛物线,然后找是否有一个抛物线经过两只鸟,然后就没了. 题干: 题目描述 Kiana 最近沉迷于一款神奇的游戏无法自拔. 简单来说,这款游戏是在一个平面上 ...

  9. [NOIP2016]愤怒的小鸟 D2 T3 状压DP

    [NOIP2016]愤怒的小鸟 D2 T3 Description Kiana最近沉迷于一款神奇的游戏无法自拔. 简单来说,这款游戏是在一个平面上进行的. 有一架弹弓位于(0,0)处,每次Kiana可 ...

  10. Noip2016愤怒的小鸟(状压DP)

    题目描述 题意大概就是坐标系上第一象限上有N只猪,每次可以构造一条经过原点且开口向下的抛物线,抛物线可能会经过某一或某些猪,求使所有猪被至少经过一次的抛物线最少数量. 原题中还有一个特殊指令M,对于正 ...

随机推荐

  1. Dojo的declare接口

    declare(classname,[],{}) declare的第一个参数是可选的,代表类的名称 declare的第二个参数代表类的继承关系,比如继承哪一个父类,可以看到:第二个参数是一个数组,所以 ...

  2. 主成分分析法(PCA)答疑

    问:为什么要去均值? 1.我认为归一化的表述并不太准确,按统计的一般说法,叫标准化.数据的标准化过程是减去均值并除以标准差.而归一化仅包含除以标准差的意思或者类似做法.2.做标准化的原因是:减去均值等 ...

  3. Java中 Character方法练习:字符串中英文字母个数 5435abc54abc3AHJ5 正则:matches("[a-zA-Z0-9]{1}")

    package com.swift; public class String_Letter_Number_Test { public static void main(String[] args) { ...

  4. cocos2x (c++/lua) spine 文件的预加载

    在之前,笔者写过一编博客,通过lua在加载场景加载spineAnimation动画精灵,保存在table中,然后在游戏中创建动画精灵时,提取加载好的spineAnimaiton中的 spSkeleto ...

  5. iOS应用架构谈-part2 view层的组织和调用方案

    前言 <iOS应用架构谈 开篇>出来之后,很多人来催我赶紧出第二篇.这一篇文章出得相当艰难,因为公司里的破事儿特别多,我自己又有点私事儿,以至于能用来写博客的时间不够充分. 现在好啦,第二 ...

  6. BZOJ-1833(数位DP)

    #include <bits/stdc++.h> using namespace std; typedef long long ll; ll a,b; int k[20]; ll dp[2 ...

  7. Jenkins注意点

    这里要填写 在 Linux 上 生成的 git 私钥 并且带上  前后 注释 ------start -----      ---end -------

  8. 06grep与find命令详解

    1. grep 命令 grep 命令用于在文本中执行关键词搜索,并显示匹配的结果,格式为"grep [选项][文件]". grep 命令的参数及其作用如下: -b 将可执行文件(b ...

  9. 2.什么是composer与packgist,composer的安装

    目录 学习地址: composer与packgist关系图片 composer的安装; 配置composer 修改国内镜像 用composer安装与卸载插件 composer插件升级后报错 学习地址: ...

  10. JAVA基础篇—多态

    class ColaEmployee父类 package com.cola; public class ColaEmployee { private String name; private int ...