题意:

n<=100000,ai<=2*10^9

思路:按二进制逐位考虑,只要有至少1位取and后为1就可以接下去

设dp[i]为第i位取and之后为1的最长的序列长度,意会一下

 #include<cstdio>
#include<iostream>
typedef long long ll;
using namespace std;
#define MOD 1000000007
#define N 110000
int a[N],dp[]; int main()
{
int n;
scanf("%d",&n);
for(int i=;i<=n;i++) scanf("%d",&a[i]);
for(int i=;i<=n;i++)
{
int tmp=;
for(int j=;j<=;j++)
if(a[i]&(<<(j-))) tmp=max(tmp,dp[j]);
tmp++;
for(int j=;j<=;j++)
if(a[i]&(<<(j-))) dp[j]=max(dp[j],tmp);
}
int ans=;
for(int i=;i<=;i++) ans=max(ans,dp[i]);
printf("%d\n",ans);
return ;
}

【BZOJ4300】绝世好题(二进制,DP)的更多相关文章

  1. BZOJ4300 绝世好题 【dp】

    题目 给定一个长度为n的数列ai,求ai的子序列bi的最长长度,满足bi&bi-1!=0(2<=i<=len). 输入格式 输入文件共2行. 第一行包括一个整数n. 第二行包括n个 ...

  2. bzoj4300 绝世好题 【dp】By cellur925

    题目描述: 给定一个长度为\(n\)的数列\(a\),求\(a\)的子序列\(b\)的最长长度,满足bi&bi-1!=0(\(2<=i<=len\)). 90分做法: 并没有部分分 ...

  3. bzoj4300: 绝世好题(DP)

    按位DP f[i]表示第i位为1的最长子序列 #include<iostream> #include<cstring> #include<cstdlib> #inc ...

  4. bzoj4300绝世好题

    bzoj4300绝世好题 题意: 给定一个长度为n的数列ai,求ai的子序列bi的最长长度,满足bi&bi-1!=0.n≤100000,ai≤10^9. 题解: 用f[i]表示当前二进制i为1 ...

  5. [bzoj4300]绝世好题_二进制拆分

    绝世好题 bzoj-4300 题目大意:题目链接. 注释:略. 想法: 二进制拆分然后用一个数组单独存一下当前答案即可. Code: #include <iostream> #includ ...

  6. 绝世好题(DP)

    题目链接:绝世好题 暴力就不用说了,和lis神似,O(n2)妥妥的挂掉,但可以得大部分分(好像是90,80)... 考虑优化,来一发非正解的优化: #include<bits/stdc++.h& ...

  7. bzoj千题计划190:bzoj4300: 绝世好题

    http://www.lydsy.com/JudgeOnline/problem.php?id=4300 f[i] 表示第i位&为1的最长长度 #include<cstdio> # ...

  8. 2018.09.27 bzoj4300: 绝世好题(二进制dp)

    传送门 简单dp. 根据题目的描述. 如果数列bn{b_n}bn​合法. 那么有:bi−1b_{i-1}bi−1​&bi!=0b_i!=0bi​!=0,因此我们用f[i]f[i]f[i]表示数 ...

  9. BZOJ4300:绝世好题(DP)

    Description 给定一个长度为n的数列ai,求ai的子序列bi的最长长度,满足bi&bi-1!=0(2<=i<=len). Input 输入文件共2行. 第一行包括一个整数 ...

  10. Bzoj4300 绝世好题

    Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 1325  Solved: 722 Description 给定一个长度为n的数列ai,求ai的子序列bi ...

随机推荐

  1. C++ 容器与继承

    如果容器类型定义为基类类型,那么虽然可以把派生类装进容器中,但是不能通过容器访问派生类自己的public成员,派生类将会倍切掉,只保留派生类的基类部分: 如果把容器定义为派生类类型,那么不能把基类类型 ...

  2. grep过滤目录或文件方法

    在使用grep在指定目录下查找包含指定字符串的文件是,我们想过滤(即不递归查询指定目录)时!可以使用 –exclude-dir 参数 单个目录实例 搜索.目录但不搜索在.目录下的.svg目录中包含&q ...

  3. c++运算符重载和虚函数

    运算符重载与虚函数 单目运算符 接下来都以AClass作为一个类例子介绍 AClass{ int var } 区分后置++与前置++ AClass operator ++ () ++前置 一般设计为返 ...

  4. nginx平滑升级的过程

    1.开始之前首先查看当前的使用版本以及编译时的参数: [root@www ~]# /usr/local/nginx/sbin/nginx -V nginx version: nginx/1.12.2 ...

  5. vue layui

    关于 vue中使用layui插件,个人一些小小的心得. 我是全局的引入,在static文件夹里存放layui的完整代码 在index页面中标签引入 <link rel="stylesh ...

  6. [转载]win10(64bit)上安装MySQL-python

    https://blog.csdn.net/builder_taoge/article/details/78292302 https://blog.csdn.net/qq_26808915/artic ...

  7. 从源码带你看懂functools的partial方法

    1.what? partial是什么, partial也叫偏函数.源码的描述是: 部分应用给定参数和关键字的新函数. New function with partial application of ...

  8. mysql-update时where条件无索引锁全表

          1 5.3日数据处理需求 UPDATE md_meter set warranty_end_date = DATE_ADD(warranty_begin_date,INTERVAL 10 ...

  9. python双向链表的疑问(Question)

    Table of Contents 1. 问题 问题 在看 collections.OrderedDict 的源码时,对于它如何构造有序的结构这一部分不是很理解,代码如下: class Ordered ...

  10. GBDT算法简述

    提升决策树GBDT 梯度提升决策树算法是近年来被提及较多的一个算法,这主要得益于其算法的性能,以及该算法在各类数据挖掘以及机器学习比赛中的卓越表现,有很多人对GBDT算法进行了开源代码的开发,比较火的 ...