EvalAI使用——类似kaggle的开源平台,不过没有kernel fork功能,比较蛋疼
官方的代码 https://github.com/Cloud-CV/EvalAI 我一直没法成功import yaml配置举办比赛(create a challenge on EvalAI 使用https://github.com/Cloud-CV/EvalAI-Starters)。
直到使用第三方的fork: https://github.com/live-wire/EvalAI
下面是介绍的简单使用流程:
A question we’re often asked is: Doesn’t Kaggle already do this? The central differences are:
Custom Evaluation Protocols and Phases: We have designed versatile backend framework that can support user-defined evaluation metrics, various evaluation phases, private and public leaderboard.
Faster Evaluation: The backend evaluation pipeline is engineered so that submissions can be evaluated parallelly using multiple cores on multiple machines via mapreduce frameworks offering a significant performance boost over similar web AI-challenge platforms.
Portability: Since the platform is open-source, users have the freedom to host challenges on their own private servers rather than having to explicitly depend on Cloud Services such as AWS, Azure, etc.
Easy Hosting: Hosting a challenge is streamlined. One can create the challenge on EvalAI using the intuitive UI (work-in-progress) or using zip configuration file.
Centralized Leaderboard: Challenge Organizers whether host their challenge on EvalAI or forked version of EvalAI, they can send the results to main EvalAI server. This helps to build a centralized platform to keep track of different challenges.
Goal
Our ultimate goal is to build a centralized platform to host, participate and collaborate in AI challenges organized around the globe and we hope to help in benchmarking progress in AI.
Performance comparison
Some background: Last year, the Visual Question Answering Challenge (VQA) 2016 was hosted on some other platform, and on average evaluation would take ~10 minutes. EvalAI hosted this year's VQA Challenge 2017. This year, the dataset for the VQA Challenge 2017 is twice as large. Despite this, we’ve found that our parallelized backend only takes ~130 seconds to evaluate on the whole test set VQA 2.0 dataset.
Installation Instructions
Setting up EvalAI on your local machine is really easy. You can setup EvalAI using two methods:
Using Docker
You can also use Docker Compose to run all the components of EvalAI together. The steps are:
Get the source code on to your machine via git.
- git clone https://github.com/Cloud-CV/EvalAI.git evalai && cd evalai
Use your postgres username and password for fields
USER
andPASSWORD
insettings/dev.py
file.Build and run the Docker containers. This might take a while. You should be able to access EvalAI at
localhost:8888
.docker-compose up --build
Using Virtual Environment
Install python 2.7.10 or above, git, postgresql version >= 10.1, have ElasticMQ installed (Amazon SQS is used in production) and virtualenv, in your computer, if you don't have it already. If you are having trouble with postgresql on Windows check this link postgresqlhelp.
Get the source code on your machine via git.
- git clone https://github.com/Cloud-CV/EvalAI.git evalai
Create a python virtual environment and install python dependencies.
- cd evalai
- virtualenv venv
- source venv/bin/activate # run this command everytime before working on project
- pip install -r requirements/dev.txt
- cd evalai
Create an empty postgres database.
sudo -i -u (username)
createdb evalai
Change Postgresql credentials in
settings/dev.py
and run migrationsUse your postgres username and password for fields
USER
andPASSWORD
indev.py
file. After changing credentials, run migrations using the following command:python manage.py migrate --settings=settings.dev
Seed the database with some fake data to work with.
python manage.py seed --settings=settings.dev
This command also creates a
superuser(admin)
, ahost user
and aparticipant user
with following credentials.SUPERUSER- username:
admin
password:password
HOST USER- username:host
password:password
PARTICIPANT USER- username:participant
password:password
That's it. Now you can run development server at http://127.0.0.1:8000 (for serving backend)
python manage.py runserver --settings=settings.dev
Please make sure that node(
>=7.x.x
), npm(>=5.x.x
) and bower(>=1.8.x
) are installed globally on your machine.Install npm and bower dependencies by running
npm install
bower install
If you running npm install behind a proxy server, use
npm config set proxy http://proxy:port
Now to connect to dev server at http://127.0.0.1:8888 (for serving frontend)
gulp dev:runserver
That's it, Open web browser and hit the url http://127.0.0.1:8888.
(Optional) If you want to see the whole game into play, then install the ElasticMQ Queue service and start the worker in a new terminal window using the following command that consumes the submissions done for every challenge:
python scripts/workers/submission_worker.py
注意:为了是新加的账户直接login并加入team,我修改了:
575 vi accounts/permissions.py
- from allauth.account.models import EmailAddress
- from rest_framework import permissions
- class HasVerifiedEmail(permissions.BasePermission):
- """
- Permission class for if the user has verified the email or not
- """
- message = "Please verify your email first!"
- def has_permission(self, request, view):
- if request.user.is_anonymous:
- return True
- else:
- print("*******************email verify removed!!!!")
- return True
- if EmailAddress.objects.filter(user=request.user, verified=True).exists():
- return True
- else:
- return False
使用docker运行:
578 docker-compose up --build
然后就是漫长的等待。各种安装依赖,安装linux docker的东西。。。
最后访问localhost:8888即可。
EvalAI使用——类似kaggle的开源平台,不过没有kernel fork功能,比较蛋疼的更多相关文章
- Flink 另外一个分布式流式和批量数据处理的开源平台
Apache Flink是一个分布式流式和批量数据处理的开源平台. Flink的核心是一个流式数据流动引擎,它为数据流上面的分布式计算提供数据分发.通讯.容错.Flink包括几个使用 Flink引擎创 ...
- Minikube之Win10单机部署Kubernetes(k8s)自动化容器操作的开源平台
Minikube之Win10单机部署 Kubernetes(k8s)是自动化容器操作的开源平台,基于这个平台,你可以进行容器部署,资源调度和集群扩容等操作.如果你曾经用过Docker部署容器,那么可以 ...
- NiftyNet开源平台的使用 -- 配置文件
NiftyNet开源平台的使用 NiftyNet基础架构是使研究人员能够快速开发和分发用于分割.回归.图像生成和表示学习应用程序,或将平台扩展到新的应用程序的深度学习解决方案. 详细介绍请见: ...
- Python开源机器学习框架:Scikit-learn六大功能,安装和运行Scikit-learn
Python开源机器学习框架:Scikit-learn入门指南. Scikit-learn的六大功能 Scikit-learn的基本功能主要被分为六大部分:分类,回归,聚类,数据降维,模型选择和数据预 ...
- P2P平台的"我要借款"功能,是否需要上传借款人的相关资料
P2P平台的前端系统,一般都会有"我要借款"这个功能.有的平台,非常重视这个功能, 把它作为主要菜单的其中一项.有的把它看得相对次要,放在顶部Top栏中. 毕竟P2P平台,其实主 ...
- 全球首发—鸿蒙开源平台OpenGL
目录: 前言 背景 鸿蒙OpenGL-ISRC的结构 OpenGL-ISRC和鸿蒙SDK OpenGL的区别 OpenGL-ISRC的使用 前言 基于安卓平台的OpenGL(androidxref.c ...
- NiftyNet开源平台使用
NiftyNet是一款开源的卷积神经网络平台,专门针对医学图像处理分析,上一篇博客已经详细介绍了这个平台,接下来让我简单介绍一下目前我了解到的使用方法.更详细的使用方法.以及配置过程请查看NiftyN ...
- 超级强大的淘宝开源平台(taobao-code)
今天发现了一个免费又高级的开源SVN服务器,taobao,阿里云CODE.迫不及待的注册了一个.感觉不错,分享给大家. 先说说我们用过的几个SVN服务器吧: google code oksvn(感觉不 ...
- (转)GIS理论知识(三)之ArcGIS平台、SuperMap超图平台和开源平台
3.1.ArcGIS平台 ArcGIS为美国ESRI公司研发的产品,为用户提供一个可伸缩的,全面的GIS平台.ArcObjects包含了许多的可编程组件,从细粒度的对象(例如单个的几何对象)到粗粒度的 ...
随机推荐
- java递归 处理权限管理菜单树或分类
1.数据库表设计 2.实体类设计 package com.ieou.capsule.dto.SystemPermissions; import java.util.List; /** * 功能菜单类 ...
- leetcode 查找每个元素都出现两次的列表,返回只出现一次的元素
Given an array of integers, every element appears # twice except for one. Find that single one. clas ...
- Spring boot Value注入 未整理 待完善
Springboot 热部署Springboot为开发者提供了一个名叫 spring-boot-devtools来使Springboot应用支持热部署,提供开发者的开发效率,无需手动重启Spring ...
- SpringBoot和Mybatis的整合
这里介绍两种整合SpringBoot和Mybatis的模式,分别是“全注解版” 和 “注解xml合并版”. 前期准备开发环境 开发工具:IDEAJDK:1.8技术:SpringBoot.Maven.M ...
- display: none; 与 jq show方法之间的联系
1. 定义四种常用隐藏元素的方式,然后调用 jq 的 show 方法显示,观察各原先隐藏元素的 display 表现,结合 jq 源码,show 方法设置 元素 display 属性值为 ...
- 牛客OI周赛4-提高组 A K小生成树(kmst)
K小生成树(kmst) 思路: 暴力+并查集 枚举边的子集,用并查集判断两个点联不联通 代码: #include<bits/stdc++.h> using namespace std; # ...
- Google Map 谷歌地图
<script> var map; function initMap() { var position = new google.maps.LatLng(1.539187, 103.647 ...
- VLC框架分析
功能部份:VLC媒体播放器的核心是libvlc ,它提供了界面,应用处理功能,如播放列表管理,音频和视频解码和输出,线程系统.所有libvlc源文件设在的/src目录及其子目录:# config/ ...
- pandas的时间戳
pandas时间: p1=pd.Timestamp(2018, 2, 3) p1输出:2018-02-03 00:00:00 p1输出类型:<class 'pandas._libs.tslib. ...
- LeetCode--232--用栈实现队列
问题描述: 使用栈实现队列的下列操作: push(x) -- 将一个元素放入队列的尾部. pop() -- 从队列首部移除元素. peek() -- 返回队列首部的元素. empty() -- 返回队 ...