官方的代码 https://github.com/Cloud-CV/EvalAI 我一直没法成功import yaml配置举办比赛(create a challenge on EvalAI 使用https://github.com/Cloud-CV/EvalAI-Starters)。

直到使用第三方的fork: https://github.com/live-wire/EvalAI

下面是介绍的简单使用流程:

A question we’re often asked is: Doesn’t Kaggle already do this? The central differences are:

  • Custom Evaluation Protocols and Phases: We have designed versatile backend framework that can support user-defined evaluation metrics, various evaluation phases, private and public leaderboard.

  • Faster Evaluation: The backend evaluation pipeline is engineered so that submissions can be evaluated parallelly using multiple cores on multiple machines via mapreduce frameworks offering a significant performance boost over similar web AI-challenge platforms.

  • Portability: Since the platform is open-source, users have the freedom to host challenges on their own private servers rather than having to explicitly depend on Cloud Services such as AWS, Azure, etc.

  • Easy Hosting: Hosting a challenge is streamlined. One can create the challenge on EvalAI using the intuitive UI (work-in-progress) or using zip configuration file.

  • Centralized Leaderboard: Challenge Organizers whether host their challenge on EvalAI or forked version of EvalAI, they can send the results to main EvalAI server. This helps to build a centralized platform to keep track of different challenges.

Goal

Our ultimate goal is to build a centralized platform to host, participate and collaborate in AI challenges organized around the globe and we hope to help in benchmarking progress in AI.

Performance comparison

Some background: Last year, the Visual Question Answering Challenge (VQA) 2016 was hosted on some other platform, and on average evaluation would take ~10 minutes. EvalAI hosted this year's VQA Challenge 2017. This year, the dataset for the VQA Challenge 2017 is twice as large. Despite this, we’ve found that our parallelized backend only takes ~130 seconds to evaluate on the whole test set VQA 2.0 dataset.

Installation Instructions

Setting up EvalAI on your local machine is really easy. You can setup EvalAI using two methods:

Using Docker

You can also use Docker Compose to run all the components of EvalAI together. The steps are:

  1. Get the source code on to your machine via git.

    git clone https://github.com/Cloud-CV/EvalAI.git evalai && cd evalai

    Use your postgres username and password for fields USER and PASSWORD in settings/dev.py file.

  2. Build and run the Docker containers. This might take a while. You should be able to access EvalAI at localhost:8888.

    docker-compose up --build

Using Virtual Environment

  1. Install python 2.7.10 or above, git, postgresql version >= 10.1, have ElasticMQ installed (Amazon SQS is used in production) and virtualenv, in your computer, if you don't have it already. If you are having trouble with postgresql on Windows check this link postgresqlhelp.

  2. Get the source code on your machine via git.

    git clone https://github.com/Cloud-CV/EvalAI.git evalai
  3. Create a python virtual environment and install python dependencies.

    cd evalai
    virtualenv venv
    source venv/bin/activate # run this command everytime before working on project
    pip install -r requirements/dev.txt
  4. Create an empty postgres database.

    sudo -i -u (username)
    createdb evalai
  5. Change Postgresql credentials in settings/dev.py and run migrations

    Use your postgres username and password for fields USER and PASSWORD in dev.py file. After changing credentials, run migrations using the following command:

    python manage.py migrate --settings=settings.dev
  6. Seed the database with some fake data to work with.

    python manage.py seed --settings=settings.dev

    This command also creates a superuser(admin), a host user and a participant user with following credentials.

    SUPERUSER- username: admin password: password
    HOST USER- username: host password: password
    PARTICIPANT USER- username: participant password: password

  7. That's it. Now you can run development server at http://127.0.0.1:8000 (for serving backend)

    python manage.py runserver --settings=settings.dev
  8. Please make sure that node(>=7.x.x), npm(>=5.x.x) and bower(>=1.8.x) are installed globally on your machine.

    Install npm and bower dependencies by running

    npm install
    bower install

    If you running npm install behind a proxy server, use

    npm config set proxy http://proxy:port
  9. Now to connect to dev server at http://127.0.0.1:8888 (for serving frontend)

    gulp dev:runserver
  10. That's it, Open web browser and hit the url http://127.0.0.1:8888.

  11. (Optional) If you want to see the whole game into play, then install the ElasticMQ Queue service and start the worker in a new terminal window using the following command that consumes the submissions done for every challenge:

    python scripts/workers/submission_worker.py

注意:为了是新加的账户直接login并加入team,我修改了:
  575  vi accounts/permissions.py

from allauth.account.models import EmailAddress
from rest_framework import permissions class HasVerifiedEmail(permissions.BasePermission):
"""
Permission class for if the user has verified the email or not
""" message = "Please verify your email first!" def has_permission(self, request, view): if request.user.is_anonymous:
return True
else:
print("*******************email verify removed!!!!")
return True
if EmailAddress.objects.filter(user=request.user, verified=True).exists():
return True
else:
return False

使用docker运行:
  578  docker-compose up --build
然后就是漫长的等待。各种安装依赖,安装linux docker的东西。。。

最后访问localhost:8888即可。

EvalAI使用——类似kaggle的开源平台,不过没有kernel fork功能,比较蛋疼的更多相关文章

  1. Flink 另外一个分布式流式和批量数据处理的开源平台

    Apache Flink是一个分布式流式和批量数据处理的开源平台. Flink的核心是一个流式数据流动引擎,它为数据流上面的分布式计算提供数据分发.通讯.容错.Flink包括几个使用 Flink引擎创 ...

  2. Minikube之Win10单机部署Kubernetes(k8s)自动化容器操作的开源平台

    Minikube之Win10单机部署 Kubernetes(k8s)是自动化容器操作的开源平台,基于这个平台,你可以进行容器部署,资源调度和集群扩容等操作.如果你曾经用过Docker部署容器,那么可以 ...

  3. NiftyNet开源平台的使用 -- 配置文件

    NiftyNet开源平台的使用    NiftyNet基础架构是使研究人员能够快速开发和分发用于分割.回归.图像生成和表示学习应用程序,或将平台扩展到新的应用程序的深度学习解决方案. 详细介绍请见: ...

  4. Python开源机器学习框架:Scikit-learn六大功能,安装和运行Scikit-learn

    Python开源机器学习框架:Scikit-learn入门指南. Scikit-learn的六大功能 Scikit-learn的基本功能主要被分为六大部分:分类,回归,聚类,数据降维,模型选择和数据预 ...

  5. P2P平台的"我要借款"功能,是否需要上传借款人的相关资料

     P2P平台的前端系统,一般都会有"我要借款"这个功能.有的平台,非常重视这个功能, 把它作为主要菜单的其中一项.有的把它看得相对次要,放在顶部Top栏中. 毕竟P2P平台,其实主 ...

  6. 全球首发—鸿蒙开源平台OpenGL

    目录: 前言 背景 鸿蒙OpenGL-ISRC的结构 OpenGL-ISRC和鸿蒙SDK OpenGL的区别 OpenGL-ISRC的使用 前言 基于安卓平台的OpenGL(androidxref.c ...

  7. NiftyNet开源平台使用

    NiftyNet是一款开源的卷积神经网络平台,专门针对医学图像处理分析,上一篇博客已经详细介绍了这个平台,接下来让我简单介绍一下目前我了解到的使用方法.更详细的使用方法.以及配置过程请查看NiftyN ...

  8. 超级强大的淘宝开源平台(taobao-code)

    今天发现了一个免费又高级的开源SVN服务器,taobao,阿里云CODE.迫不及待的注册了一个.感觉不错,分享给大家. 先说说我们用过的几个SVN服务器吧: google code oksvn(感觉不 ...

  9. (转)GIS理论知识(三)之ArcGIS平台、SuperMap超图平台和开源平台

    3.1.ArcGIS平台 ArcGIS为美国ESRI公司研发的产品,为用户提供一个可伸缩的,全面的GIS平台.ArcObjects包含了许多的可编程组件,从细粒度的对象(例如单个的几何对象)到粗粒度的 ...

随机推荐

  1. linux 换源

    Ubuntu换源 ubuntu 的默认源是美国的,所以下载起来特别慢.更换国内源:用vi和gedit 打开 /etc/apt/sources.list 将其中的us.archive 全部替换为 cn. ...

  2. hdu 3208 Integer’s Power 筛法

    Integer’s Power Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  3. python中常用的模块一

    一,常用的模块 模块就是我们将装有特定功能的代码进行归类,从代码编写的单位来看我们的程序,从小到大的顺序: 一条代码<语句块,<代码块(函数,类)<模块我们所写的所有py文件都是模块 ...

  4. Django2.2安装

    Django2.2安装 https://media.djangoproject.com/releases/2.2/Django-2.2.tar.gz 解压 tar -zvxf Django-2.2.t ...

  5. cordova + Vue 开发 APP 上手指南

    什么是 cordova cordova 是由 Apache 基金会支持的,使用 HTML5 + CSS3 + JS 来构建多平台 APP 程序的开发框架.其支持调用手机系统(Android.IOS.W ...

  6. Codeforces 600 E - Lomsat gelral

    E - Lomsat gelral 思路1: 树上启发式合并 代码: #include<bits/stdc++.h> using namespace std; #define fi fir ...

  7. Vue.use源码分析

    我想有过vue开发经验的,对于vue.use并不陌生.当使用vue-resource或vue-router等全局组件时,必须通过Vue.use方法引入,才起作用.那么vue.use在组件引入之前到底做 ...

  8. HTML第十四章总结 HTML forms

    第十四章主要讲了 html forms,通过 forms,我们可以得到 customers' feedback,使得网页能够 interactive,本章的内容分为三个部分: forms 的 elem ...

  9. 雷林鹏分享:XML 命名空间

    XML 命名空间 XML 命名空间提供避免元素命名冲突的方法. 命名冲突 在 XML 中,元素名称是由开发者定义的,当两个不同的文档使用相同的元素名时,就会发生命名冲突. 这个 XML 携带 HTML ...

  10. springboot---->java.lang.IllegalArgumentException

    springboot aop编程时,在方法上加入通知的注解,添加织入路径测试,发生报错: java.lang.IllegalArgumentException: Pointcut is not wel ...