洛谷.3834.[模板]可持久化线段树(主席树 静态区间第k小)
//离散化后范围1~cnt不要错
#include<cstdio>
#include<cctype>
#include<algorithm>
//#define gc() getchar()
#define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
const int N=2e5+5,MAXIN=2e6;
int n,m,A[N],ref[N],cnt,sum[N*18],tot,son[N*18][2],root[N];
char IN[MAXIN],*SS=IN,*TT=IN;
inline int read()
{
int now=0,f=1;register char c=gc();
for(;!isdigit(c);c=gc()) if(c=='-') f=-1;
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now*f;
}
int Find(int v)
{
int l=1,r=cnt,m;
while(l<r)
if(ref[m=l+r>>1]<v) l=m+1;
else r=m;
return l;
}
void Discrete()
{
std::sort(ref+1,ref+1+n);
cnt=1;
for(int i=2;i<=n;++i)
if(ref[i]!=ref[i-1]) ref[++cnt]=ref[i];
for(int i=1;i<=n;++i) A[i]=Find(A[i]);
}
void Build(int x,int &y,int l,int r,int pos)
{
sum[y=++tot]=sum[x]+1;
if(l==r) return;
int m=l+r>>1;
if(pos<=m) son[y][1]=son[x][1],Build(son[x][0],son[y][0],l,m,pos);
else son[y][0]=son[x][0],Build(son[x][1],son[y][1],m+1,r,pos);
}
int Query(int x,int y,int l,int r,int k)
{
if(l==r) return l;
int m=l+r>>1,tmp=sum[son[y][0]]-sum[son[x][0]];
if(tmp>=k) return Query(son[x][0],son[y][0],l,m,k);
else return Query(son[x][1],son[y][1],m+1,r,k-tmp);
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("3834.in","r",stdin);
#endif
n=read(),m=read();
for(int i=1;i<=n;++i) ref[i]=A[i]=read();
Discrete();
for(int i=1;i<=n;++i) Build(root[i-1],root[i],1,cnt,A[i]);
for(int i=1,l,r,k;i<=m;++i)
l=read(),r=read(),k=read(),printf("%d\n",ref[Query(root[l-1],root[r],1,cnt,k)]);
return 0;
}
洛谷.3834.[模板]可持久化线段树(主席树 静态区间第k小)的更多相关文章
- 洛谷P3834 [模板]可持久化线段树1(主席树) [主席树]
题目传送门 可持久化线段树1(主席树) 题目背景 这是个非常经典的主席树入门题——静态区间第K小 数据已经过加强,请使用主席树.同时请注意常数优化 题目描述 如题,给定N个正整数构成的序列,将对于指定 ...
- 主席树总结(经典区间第k小问题)(主席树,线段树)
接着上一篇总结--可持久化线段树来整理吧.点击进入 这两种数据结构确实有异曲同工之妙.结构是很相似的,但维护的主要内容并不相同,主席树的离散化.前缀和等思想也要更难理解一些. 闲话 话说刚学习主席树的 ...
- Dynamic Rankings || 动态/静态区间第k小(主席树)
JYF大佬说,一星期要写很多篇博客才会有人看 但是我做题没有那么快啊QwQ Part1 写在前面 区间第K小问题一直是主席树经典题=w=今天的重点是动态区间第K小问题.静态问题要求查询一个区间内的第k ...
- 【洛谷 P3834】 可持久化线段树1(主席树)
题目链接 主席树=可持久化权值线段树. 如果你不会可持久化线段树,请右转 如果你不会权值线段树,请自行脑补,就是线段树维护值域里有多少个数出现. 可持久化线段树是支持查询历史版本的. 我们对每个数都进 ...
- 洛谷.3835.[模板]可持久化平衡树(fhq treap)
题目链接 对每次Merge(),Split()时产生的节点都复制一份(其实和主席树一样).时间空间复杂度都为O(qlogq).(应该更大些 因为rand()?内存真的爆炸..) 对于无修改的操作实际上 ...
- 洛谷P2633 Count on a tree(主席树,倍增LCA)
洛谷题目传送门 题目大意 就是给你一棵树,每个点都有点权,每次任意询问两点间路径上点权第k小的值(强制在线). 思路分析 第k小......又是主席树了.但这次变成树了,无法直接维护前缀和. 又是树上 ...
- 洛谷P2633 Count on a tree(主席树,倍增LCA,树上差分)
洛谷题目传送门 题目大意 就是给你一棵树,每个点都有点权,每次任意询问两点间路径上点权第k小的值(强制在线). 思路分析 第k小......又是主席树了.但这次变成树了,无法直接维护前缀和. 又是树上 ...
- 2018.07.01洛谷P2617 Dynamic Rankings(带修主席树)
P2617 Dynamic Rankings 题目描述 给定一个含有n个数的序列a[1],a[2],a[3]--a[n],程序必须回答这样的询问:对于给定的i,j,k,在a[i],a[i+1],a[i ...
- 【可持久化线段树】POJ2104 查询区间第k小值
K-th Number Time Limit: 20000MS Memory Limit: 65536K Total Submissions: 61284 Accepted: 21504 Ca ...
随机推荐
- MySQL日志——Undo | Redo【转】
本文是介绍MySQL数据库InnoDB存储引擎重做日志漫游 00 – Undo LogUndo Log 是为了实现事务的原子性,在MySQL数据库InnoDB存储引擎中,还用Undo Log来实现多版 ...
- 命令查看WebSphere MQ运行状态
参考:https://wenku.baidu.com/view/34e40e2ffd0a79563c1e72b9.html 一.查看队列管理器运行状态 # dspmq 显示结果中QMNAME表示MQ队 ...
- 企业内部在centos7.2系统中必杀技NTP时间服务器及内网服务器时间同步(windows和linux客户端同步)
网络时间协议NTP(Network Time Protocol)是用于互联网中时间同步的标准互联网协议.NTP的用途是把计算机的时间同步到某些时间标准.目前采用的时间标准是世界协调时UTC(Unive ...
- 在Linux上安装go-gtk
由于Linux的Gnome桌面就是用GTK编写的,所以,Linux本身就包含GTK工具库,安装GTK工具库在线安装即可. 第一步:在终端输入: sudo apt-get install libgtk3 ...
- 在listView中的模糊查询和删除
- 深入浅出 JavaScript 关键词 -- this
深入浅出 JavaScript 关键词 -- this 要说 JavaScript 这门语言最容易让人困惑的知识点,this 关键词肯定算一个.JavaScript 语言面世多年,一直在进化完善,现在 ...
- python中的zip、map、reduce 、lambda函数的使用。
lambda只是一个表达式,函数体比def简单很多. lambda的主体是一个表达式,而不是一个代码块.仅仅能在lambda表达式中封装有限的逻辑进去. lambda表达式是起到一个函数速写的作用.允 ...
- LeetCode(63):不同路径 II
Medium! 题目描述: 一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” ). 机器人每次只能向下或者向右移动一步.机器人试图达到网格的右下角(在下图中标记为“F ...
- LeetCode(26): 删除排序数组中的重复项
Easy! 题目描述: 给定一个排序数组,你需要在原地删除重复出现的元素,使得每个元素只出现一次,返回移除后数组的新长度. 不要使用额外的数组空间,你必须在原地修改输入数组并在使用 O(1) 额外空间 ...
- C++ code:数值计算之矩形法求解积分问题
积分的通常方法是将区域切割成一个个的小矩形,然后求这些小矩形的和.小矩形切割得越细,计算精度就越高,可以将切割小矩形的数量作为循环迭代变量,将前后两个不同精度下的小矩形和之差,作为逼近是否达到要求的比 ...