【BZOJ】1443: [JSOI2009]游戏Game
【算法】博弈论+二分图匹配(最大流)
【题解】方格图黑白染色得到二分图,
二分图博弈:当起点不属于某个最大匹配时,后手必胜。
问题转化为那些点不属于某个最大匹配。
先找到一个最大匹配,非匹配点加入答案。
假设一个匹配点要解放成为非匹配点,则与其匹配的点必须去匹配另一个点。如果另一个点也是匹配点,则其对面又要去找另一个点。
最终得到结论,一个匹配点的解放,必须有一个非匹配点进入最大匹配。
那么从S一侧的非匹配点出发,沿着“非匹配边-匹配边”的路径走,途中经过的S一侧的匹配点都可以被解放出来。
从T一侧的非匹配点出发也做一次,得到答案。
#include<cstdio>
#include<cstring>
#include<queue>
#include<algorithm>
using namespace std;
const int maxn=,inf=0x3f3f3f3f;
const int dx[]={,-,,,};
const int dy[]={,,,,-};
struct edge{int v,from,flow;}e[maxn*];
int first[maxn],id[][],idx[maxn],idy[maxn],S,T,cnt,tot=,d[maxn],ans[maxn],ansnum,cur[maxn],col[maxn],n,m;
char s[];
bool map[][],vis[maxn];
void insert(int u,int v,int w)
{tot++;e[tot].v=v;e[tot].flow=w;e[tot].from=first[u];first[u]=tot;
tot++;e[tot].v=u;e[tot].flow=;e[tot].from=first[v];first[v]=tot;}
queue<int>q;
bool bfs()
{
memset(d,-,sizeof(d));
q.push(S);d[S]=;
while(!q.empty())
{
int x=q.front();q.pop();
for(int i=first[x];i;i=e[i].from)
if(d[e[i].v]==-&&e[i].flow)
{
d[e[i].v]=d[x]+;
q.push(e[i].v);
}
}
return d[T]!=-;
}
int dinic(int x,int a)
{
if(x==T||a==)return a;
int flow=,f;
for(int& i=cur[x];i;i=e[i].from)
if(d[e[i].v]==d[x]+&&(f=dinic(e[i].v,min(a,e[i].flow))))
{
e[i].flow-=f;
e[i^].flow+=f;
a-=f;
flow+=f;
if(a==)break;
}
return flow;
}
void dfs(int x,int f)
{
vis[x]=;
if(col[x]==f&&x!=S&&x!=T)ans[++ansnum]=x;
for(int i=first[x];i;i=e[i].from)
if(e[i].flow==f&&!vis[e[i].v])dfs(e[i].v,f);
}
int main()
{
scanf("%d%d",&n,&m);
cnt=;
for(int i=;i<=n;i++)
{
scanf("%s",s+);
for(int j=;j<=m;j++)if(s[j]=='.')
{
id[i][j]=++cnt;
idx[cnt]=i;idy[cnt]=j;
map[i][j]=;
}
}
S=;T=++cnt;
for(int i=;i<=n;i++)
{
for(int j=;j<=m;j++)if(map[i][j])
{
if((i+j)&)
{
insert(S,id[i][j],);
for(int k=;k<=;k++)if(map[i+dx[k]][j+dy[k]])
{
insert(id[i][j],id[i+dx[k]][j+dy[k]],);
}
col[id[i][j]]=;
}
else{insert(id[i][j],T,);col[id[i][j]]=;}
}
}
while(bfs())
{
for(int i=;i<=cnt;i++)cur[i]=first[i];
dinic(S,inf);
}
ansnum=;
memset(vis,,sizeof(vis));
dfs(S,);
memset(vis,,sizeof(vis));
dfs(T,);
if(ansnum)
{
printf("WIN\n");
sort(ans+,ans+ansnum+);
for(int i=;i<=ansnum;i++)printf("%d %d\n",idx[ans[i]],idy[ans[i]]);
}
else printf("LOSE\n");
return ;
}
【BZOJ】1443: [JSOI2009]游戏Game的更多相关文章
- BZOJ:1443: [JSOI2009]游戏Game
原题链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1443 反正不看题解我是完全想不出系列…… 先把棋盘黑白染色,也就是同一对角线上颜色相同,使 ...
- BZOJ.1443.[JSOI2009]游戏Game(二分图博弈 匈牙利)
题目链接 \(Description\) 一个\(N*M\)的有障碍的棋盘,先手放置棋子后,从后手开始轮流移动棋子,不能走重复的位置,不能移动的输.求在哪些位置放棋子是先手必胜的. \(Solutio ...
- BZOJ 1443 [JSOI2009]游戏Game ——博弈论
好题. 首先看到棋盘,先黑白染色. 然后就是二分图的经典模型. 考虑最特殊的情况,完美匹配,那么先手必胜, 因为无论如何,先手走匹配边,后手无论走哪条边,总有对应的匹配边. 如果在不在最大匹配中出发, ...
- BZOJ:[JSOI2009]游戏Game【二分图匹配乱搞】
题目大意:n*m的棋盘,其中有些区域是禁区,两个人在棋盘上进行博弈,后手选择棋子的初始位置,然后先后手轮流将棋子往上下左右移动,走过的区域不能再走,问能否有一个位置使得后手必胜 Input 输入数据首 ...
- BZOJ1443: [JSOI2009]游戏Game
如果没有不能走的格子的话,和BZOJ2463一样,直接判断是否能二分图匹配 现在有了一些不能走的格子 黑白染色后求出最大匹配 如果是完备匹配,则无论如何后手都能转移到1*2的另一端,故先手必输 否则的 ...
- JSOI2009 游戏
1443: [JSOI2009]游戏Game Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 557 Solved: 251[Submit][Stat ...
- BZOJ 1444:[JSOI2009]有趣的游戏
BZOJ 1444:[JSOI2009]有趣的游戏 题目链接 首先我们建出Trie图,然后高斯消元. 我们设\(f_i\)表示经过第\(i\)个点的期望次数: \[ f_x=\sum i\cdot p ...
- [BZOJ 2257][JSOI2009]瓶子和燃料 题解(GCD)
[BZOJ 2257][JSOI2009]瓶子和燃料 Description jyy就一直想着尽快回地球,可惜他飞船的燃料不够了. 有一天他又去向火星人要燃料,这次火星人答应了,要jyy用飞船上的瓶子 ...
- 洛谷 P4571 BZOJ 2257 [JSOI2009]瓶子和燃料
bzoj题目链接 上面hint那里是选择第2个瓶子和第3个瓶子 Time limit 10000 ms Memory limit 131072 kB OS Linux Source Jsoi2009 ...
随机推荐
- IntersectionObserver简介
写在前面 在移动端,有个很重要的概念,叫做懒加载,适用于一些图片资源特别多,ajax数据特别多的页面中,经常会有动态加载数据的场景中,这个时候,我们通常是使用监听scroll或者使用setInterv ...
- AtCoder Beginner Contest 118 解题报告
A - B +/- A #include <bits/stdc++.h> int main() { int a, b; std::cin >> a >> b; b ...
- pgm12
作为 inference 部分的小结,我们这里对 machine learning 里面常见的三个 model 的 inference 问题进行整理,当然很幸运的是他们都存在 tractable 的算 ...
- MySQL 5.7双主同步部分表
参考:http://www.jb51.net/article/122892.htm?pc 前言: 我们要配置双主同步的mysql服务器. 暂时叫做,mysql1和mysql2吧. 一 mysql的配 ...
- Java 的类加载机制
Java 的类加载机制 来源 https://www.cnblogs.com/xiaoxi/p/6959615.html 一.什么是类的加载 类的加载指的是将类的.class文件中的二进制数据读入到内 ...
- 自学Zabbix之路15.4 Zabbix数据库表结构简单解析-Expressions表、Media表、 Events表
点击返回:自学Zabbix之路 点击返回:自学Zabbix4.0之路 点击返回:自学zabbix集锦 自学Zabbix之路15.4 Zabbix数据库表结构简单解析-Expressions表.Medi ...
- [JOI2017] サッカー (Soccer)
原题题面看不懂的可以看下面的\(CJ\)版中文题面 $ $ \(CJ\)版: $ $ 这道题是\(JOI\)的\(T4\),放到联赛大概就是\(Day2,T3\)的难度 $ $ \(5\)分: 这一档 ...
- Internet Explorer 10 administration IE10管理
http://4sysops.com/archives/internet-explorer-10-administration-part-1-overview/ http://4sysops.com/ ...
- C# 数组&集合&泛型集合
一.数组 必须规定类型,必须规定长度: 1.定义 int[ ] i = new int[5]; int[] j = new int[]{1,2,3,4,5}; 2.数组的遍历: Console.Wr ...
- 上下文管理协议with_open,__enter__和__exit__(三十八)
在操作文件对象的时候可以这么写 with open('a.txt') as f: '代码块' 上述叫做上下文管理协议,即with语句,为了让一个对象兼容with语句,必须在这个对象的类中声明__ent ...