RCNN
[Rich feature hierarchies for accurate object detection and semantic segmentation]
技术路线:selective search + CNN + SVMs
Step1:候选框提取(selective search)
训练:给定一张图片,利用seletive search方法从中提取出2000个候选框。由于候选框大小不一,考虑到后续CNN要求输入的图片大小统一,将2000个候选框全部resize到227*227分辨率(为了避免图像扭曲严重,中间可以采取一些技巧减少图像扭曲)。
测试:给定一张图片,利用seletive search方法从中提取出2000个候选框。由于候选框大小不一,考虑到后续CNN要求输入的图片大小统一,将2000个候选框全部resize到227*227分辨率(为了避免图像扭曲严重,中间可以采取一些技巧减少图像扭曲)。
Step2:特征提取(CNN)
训练:提取特征的CNN模型需要预先训练得到。训练CNN模型时,对训练数据标定要求比较宽松,即SS方法提取的proposal只包含部分目标区域时,我们也将该proposal标定为特定物体类别。这样做的主要原因在于,CNN训练需要大规模的数据,如果标定要求极其严格(即只有完全包含目标区域且不属于目标的区域不能超过一个小的阈值),那么用于CNN训练的样本数量会很少。因此,宽松标定条件下训练得到的CNN模型只能用于特征提取。
测试:得到统一分辨率227*227的proposal后,带入训练得到的CNN模型,最后一个全连接层的输出结果---4096*1维度向量即用于最终测试的特征。
Step3:分类器(SVMs)
训练:对于所有proposal进行严格的标定(可以这样理解,当且仅当一个候选框完全包含ground truth区域且不属于ground truth部分不超过e.g,候选框区域的5%时认为该候选框标定结果为目标,否则位背景),然后将所有proposal经过CNN处理得到的特征和SVM新标定结果输入到SVMs分类器进行训练得到分类器预测模型。
测试:对于一副测试图像,提取得到的2000个proposal经过CNN特征提取后输入到SVM分类器预测模型中,可以给出特定类别评分结果。
结果生成:得到SVMs对于所有Proposal的评分结果,将一些分数较低的proposal去掉后,剩下的proposal中会出现候选框相交的情况。采用非极大值抑制技术,对于相交的两个框或若干个框,找到最能代表最终检测结果的候选框(非极大值抑制方法可以参考:http://blog.csdn.net/pb09013037/article/details/45477591)
R-CNN需要对SS提取得到的每个proposal进行一次前向CNN实现特征提取,因此计算量很大,无法实时。此外,由于全连接层的存在,需要严格保证输入的proposal最终resize到相同尺度大小,这在一定程度造成图像畸变,影响最终结果。
RCNN的更多相关文章
- r-cnn学习(九):学习总结
首先看下代码文件夹的说明(这部分转自:http://blog.csdn.net/bailufeiyan/article/details/50749694) tools 在tools文件夹中,是我们直接 ...
- Fast RCNN 训练自己的数据集(3训练和检测)
转载请注明出处,楼燚(yì)航的blog,http://www.cnblogs.com/louyihang-loves-baiyan/ https://github.com/YihangLou/fas ...
- Fast RCNN 训练自己数据集 (2修改数据读取接口)
Fast RCNN训练自己的数据集 (2修改读写接口) 转载请注明出处,楼燚(yì)航的blog,http://www.cnblogs.com/louyihang-loves-baiyan/ http ...
- r-cnn学习(八):minibatch
这段代码包括由输入图片随机生成相应的RoIs,并生成相应的blobs,由roidb得到相应的 minibatch.其代码如下. # ---------------------------------- ...
- rcnn学习(六):imdb.py学习
# -------------------------------------------------------- # Fast R-CNN # Copyright (c) 2015 Microso ...
- r-cnn学习(六):RPN及AnchorTargetLayer学习
RPN网络是faster与fast的主要区别,输入特征图,输出region proposals以及相应的分数. # ------------------------------------------ ...
- r-cnn学习(五):SmoothL1LossLayer论文与代码的结合理解
A Loss Function for Learning Region Proposals 训练RPN时,只对两种anchor给予正标签:和gt_box有着最高的IoU && IoU超 ...
- r-cnn学习(四):train_faster_rcnn_alt_opt.py源码学习
论文看的云里雾里,希望通过阅读其代码来进一步了解. 参考:http://blog.csdn.net/sloanqin/article/details/51525692 首先是./tools/train ...
- faster r-cnn 在CPU配置下训练自己的数据
因为没有GPU,所以在CPU下训练自己的数据,中间遇到了各种各样的坑,还好没有放弃,特以此文记录此过程. 1.在CPU下配置faster r-cnn,参考博客:http://blog.csdn.net ...
- 论文阅读(Chenyi Chen——【ACCV2016】R-CNN for Small Object Detection)
Chenyi Chen--[ACCV2016]R-CNN for Small Object Detection 目录 作者和相关链接 方法概括 创新点和贡献 方法细节 实验结果 总结与收获点 参考文献 ...
随机推荐
- Window应急响应(一):FTP暴力破解
0x00 前言 FTP是一个文件传输协议,用户通过FTP可从客户机程序向远程主机上传或下载文件,常用于网站代码维护.日常源码备份等.如果攻击者通过FTP匿名访问或者弱口令获取FTP权限,可直接上传 ...
- Linux->Windows主机目录和文件名中文乱码恢复
目录 Linux->Windows主机目录和文件名中文乱码恢复 声明 一. 乱码问题 二. 调试环境 三. 目录和文件名乱码恢复 3.1 可选方案 3.1.1 通过合适的编解码转换 3.1.2 ...
- solus 系统 - 安装编译工具
将会安装 gcc,make等工具 sudo eopkg install -c system.devel VirtualBox工具 https://solus-project.com/articles/ ...
- postgresql----聚合函数
聚合函数是从一组输入中计算出一个结果的函数. 测试表 test=# \d tbl_test Table "public.tbl_test" Column | Type | Modi ...
- 壁虎书4 Training Models
Linear Regression The Normal Equation Computational Complexity 线性回归模型与MSE. the normal equation: a cl ...
- linux_check
linux_check echo "********CPU****************" echo 总核数 = 物理CPU个数 X 每颗物理CPU的核数 echo " ...
- web.config/app.config敏感数据加/解密的二种方法
一 建立虚拟目录 http://localhost/EncryptWebConfig,并添加web.config,其中包含数据库连接字符串: <connectionStrings> ...
- VS2015工具箱不出现ArcGIS Windows Forms怎么办?
原文: https://blog.csdn.net/pangpi814961437/article/details/7954033
- [troubleshoot][archliunx][chromium][flash] chrome提示flash不是最新
最近chrome总是在提示flash不是最新要求更新. 原来以前用的flash包 chromium-pepper-flash 不见了,改名变成了pepper-flash. /home/tong [to ...
- Aop的基本介绍
基本概念 通知 就是你想要的功能,也就是我们常说的安全.事物.日志等.先定义好这些,然后再想用的地方用一下.包含Aspect的一段处理代码 注意:其实这些功能(通知)并不是我们业务逻辑所必须的,只是 ...