原题传送门

神奇的5分算法:直接输出样例。

20分算法

直接把每个点是否有牛的状态DFS一遍同时判断是否合法,时间复杂度约为\(O(2^{n^2})\)(因为有判断合法的剪枝所以会比这个低)。而在前四个测试点中\(N\le4\),用枚举算法在最坏情况下需要运行\(65536\)次,时间非常富裕,但是在之后的测试点中就会超时了。

50分算法

每四个方格内都有\(C^2_4=6\)种方法放置牛:

  1   2   3   4   5   6
CC C. C. .C .C ..
.. C. .C C. .C CC

DFS每四个方格内的六种情况同时判断是否合法,时间复杂度约为\(O(6^{n^2})\)(因为有判断合法的剪枝所以会比这个低)。

部分参考代码:

int a[1001][1001],ans,n;
char v[1001][1001];
string d[]={"cc00","c0c0","c00c","0cc0","0c0c","00cc"};
int dx[]={0,0,1,1};
int dy[]={0,1,0,1};
void dfs(int x,int y){
int nextx=x,nexty=y+1;
if(nexty==n) nextx++,nexty = 1;
if(x>=n){
int newscore=0;
for(int i=1;i<=n;i++) for(int j=1;j<=n;j++) newscore+=v[i][j]=='c'?a[i][j]:0;
ans=max(ans,newscore);//更新答案
return;
}
for(int i=0;i<6;i++){
int match=true;
string old="";
for(int j=0;j<4;j++) old+=v[x+dx[j]][y+dy[j]];
for(int j=0;j<4;j++){
int row=x+dx[j],col=y+dy[j];
if(v[row][col]!=' '&&v[row][col]!=d[i][j]){//判断是否合法
match=false;
break;
}
}
if(match){
for(int j=0;j<4;j++) v[x+dx[j]][y+dy[j]]=d[i][j];
dfs(nextx,nexty);
for(int j=0;j<4;j++) v[x+dx[j]][y+dy[j]]=old[j];
}//回溯
}
}

上面这份代码是我的神仙老师 @akic 写的,大家可以去膜拜他

满分算法

先给大家看几种合法的\(3\ast3\)放置方法:

C.C  CC.  C.C  ..C
C.C ..C .C. CC.
.C. CC. C.C ..C

发现了吧,每一行或每一列的奶牛排列方式一定是交替排列的,而且上一行或上一列的交替排列方式对这一行或这一列交替排列方式没有影响,所以我们只需要先计算每一行的奇数列之和 和 偶数列之和 以及每一列的奇数行之和 和 偶数行之和(建议多读几遍,我当时都写晕了),再取每行的两种交替方式中的最大值,最后再取行上交替排列和列上交替排列的最大值就是答案了。

参考代码:

#include <bits/stdc++.h>
using namespace std;
int n,a,x[1010][2],y[1010][2],num,ans;
int main(){
scanf("%d",&n);
for(int i=1;i<=n;++i)
for(int j=1;j<=n;++j)
scanf("%d",&a),x[i][j%2]+=a,y[j][i%2]+=a;
for(int i=1;i<=n;++i)
num+=max(x[i][1],x[i][0]),ans+=max(y[i][1],y[i][0]);
printf("%d",max(num,ans));
return 0;
}//为什么大家的代码都这么长啊……

Update 1(2021/2/14):改正了50分算法的时间复杂度

「题解报告」P7301 【[USACO21JAN] Spaced Out S】的更多相关文章

  1. 「题解报告」 P3167 [CQOI2014]通配符匹配

    「题解报告」 P3167 [CQOI2014]通配符匹配 思路 *和?显然无法直接匹配,但是可以发现「通配符个数不超过 \(10\) 」,那么我们可以考虑分段匹配. 我们首先把原字符串分成多个以一个通 ...

  2. 「题解报告」P4577 [FJOI2018]领导集团问题

    题解 P4577 [FJOI2018]领导集团问题 题解区好像没有线段树上又套了二分的做法,于是就有了这片题解. 题目传送门 怀着必 WA 的决心交了两发,一不小心就过了. 题意 求一个树上最长不下降 ...

  3. 「题解报告」P2154 虔诚的墓主人

    P2154 虔诚的墓主人 题解 原题传送门 题意 在 \(n\times m\) 一个方格上给你 \(w\) 个点,求方格里每个点正上下左右各选 \(k\) 个点的方案数. \(1 \le N, M ...

  4. 「题解报告」SP16185 Mining your own business

    题解 SP16185 Mining your own business 原题传送门 题意 给你一个无向图,求至少安装多少个太平井,才能使不管那个点封闭,其他点都可以与有太平井的点联通. 题解 其他题解 ...

  5. 「题解报告」Blocks

    P3503 Blocks 题解 原题传送门 思路 首先我们可以发现,若 \(a_l\) ~ \(a_r\) 的平均值大于等于 \(k\) ,则这个区间一定可以转化为都大于等于 \(k\) 的.我们就把 ...

  6. 「题解报告」P3354

    P3354 题解 题目传送门 一道很恶心的树形dp 但是我喜欢 题目大意: 一片海旁边有一条树状的河,入海口有一个大伐木场,每条河的分叉处都有村庄.建了伐木场的村庄可以直接处理木料,否则要往下游的伐木 ...

  7. 「题解报告」CF1067A Array Without Local Maximums

    大佬们的题解都太深奥了,直接把转移方程放出来让其他大佬们感性理解,蒟蒻们很难理解,所以我就写了一篇让像我一样的蒟蒻能看懂的题解 原题传送门 动态规划三部曲:确定状态,转移方程,初始状态和答案. --神 ...

  8. 「GXOI / GZOI2019」简要题解

    「GXOI / GZOI2019」简要题解 LOJ#3083. 「GXOI / GZOI2019」与或和 https://loj.ac/problem/3083 题意:求一个矩阵的所有子矩阵的与和 和 ...

  9. 【题解】#6622. 「THUPC 2019」找树 / findtree(Matrix Tree+FWT)

    [题解]#6622. 「THUPC 2019」找树 / findtree(Matrix Tree+FWT) 之前做这道题不理解,有一点走火入魔了,甚至想要一本近世代数来看,然后通过人类智慧思考后发现, ...

随机推荐

  1. 测试平台系列(97) 完善执行case部分

    大家好~我是米洛! 我正在从0到1打造一个开源的接口测试平台, 也在编写一套与之对应的教程,希望大家多多支持. 欢迎关注我的公众号米洛的测开日记,获取最新文章教程! 回顾 上一节我们讨论了怎么结束一个 ...

  2. Lucene从入门到实战

    Lucene 在了解Lucene之前,我们先了解下全文数据查询. 全文数据查询 我们的数据一般分为两种:结构化数据和非结构化数据 结构化数据:有固定格式或有限长度的数据,如数据库中的数据.元数据 非结 ...

  3. 腾讯视频的qlv格式转换为mp4格式

    1.点击设置->下载设置->缓存管理 下的文件目录复制; 2复制在 我的电脑路径栏目中 找到缓存目录 文件夹vodcache; 3.打开视频对应文件; 4.打开cmd命令窗口 5.跳转 到 ...

  4. kruskal 及其应用

    kruskal 最小生成树 kruskal 是一种常见且好理解的最小生成树(MST)算法. 前置知识 并查集和路径压缩 生成树 在有 n 的顶点的无向图中,取其中 n-1 条边相连,所得到的树即为生成 ...

  5. Java集合框架(一)-ArrayList

    大佬理解->Java集合之ArrayList 1.ArrayList的特点 存放的元素有序 元素不唯一(可以重复) 随机访问快 插入删除元素慢 非线程安全 2.底层实现 底层初始化,使用一个Ob ...

  6. SAP 文件操作类 CL_GUI_FRONTEND_SERVICES

    1 .文件下载. DATA: l_filename TYPE string, "file name l_path TYPE string, "file path l_fullpat ...

  7. RPA应用场景-产品主数据同步

    场景概述 产品主数据同步 所涉系统名称 产品管理系统.SAP系统 人工操作(时间/次) 35分钟 所涉人工数量 3 操作频率 不定时 场景流程1.登录收购品牌产品管理系统 2.根据时间.产品分类等选择 ...

  8. 抓到Dubbo异步调用的小BUG,再送你一个贡献开源代码的机会

    hello,大家好呀,我是小楼. 最近一个技术群有同学at我,问我是否熟悉Dubbo,这我熟啊~ 他说遇到了一个Dubbo异步调用的问题,怀疑是个BUG,提到BUG我可就不困了,说不定可以水,哦不.. ...

  9. 广西省行政村边界shp数据/广西省乡镇边界/广西省土地利用分类数据/广西省气象数据/降雨量分布数据/太阳辐射数据

    ​  数据下载链接:数据下载链接 广西壮族自治区,地处中国南部,北回归线横贯中部,属亚热带季风气候区.南北以贺州--东兰一线为界,此界以北属中亚热带季风气候区,以南属南亚热带季风气候区. 数据范围:全 ...

  10. ERROR .web.servlet.DispatcherServlet - Context initialization failed

    自己创建了一个SSM 项目,使用maven的tomcat7 运行报错 ERROR .web.servlet.DispatcherServlet - Context initialization fai ...