1.Combinatorial Mathematics

1.1 Bell Number: 

\(B_n\)表示元素个数为n的集合划分成若干个不相交集合的方案数。

\(B_{n + 1} = \sum_{k = 0}^n C(n,k)B_k\).

1.2 Catalan Number:

递推公式: \(h_1 = 1, h_n = \frac{h_{n-1}(4n-2)}{n+1}\).

组合数公式:\(h_n = \frac{C(2n,2)}{n +1} = C(2n,n) - C(2n,n+1)\).

前n项: 1,1,2,5,14,42,132,429,1430,4862,16796,58768

长度为\(n\) 的合法括号匹配为\(h_{n}\), 有 \(n+1\) 个叶子节点的二叉树的形态有 \(h_{n}\) 个.

convex polygon with \(n + 2\) sides can be cut into triangles in \(h_{n}\) different ways.

1.3 Cayley's Theorem:

所有群G同构于在G上的对称群的子群。

拓展版本:对于\(n\) 个点, \(m\)个连通块,每个连通块\(a[i]\)个点,用\(s-1\)条边连通的方案数为\(n^{s-2}a[1]a[2]...a[m]\)。

n个节点(有标号)的树的形态个数为\(n^{n-2}\).。

1.4 Jacobi's Four Square Theorem

设 \(a^2 + b^2 + c^2+d^2 = n\) 的自然整数解的个数为\(r4(n)\), \(d(n)\)为n的约数和,由Jacobi's Four Square Theorem可知,若n是奇数,则\(r4(n) = 8d(n)\), 否则\(r4(n) = 24d(k)\), \(k\)为 \(n\) 去除所有 \(2\) 后的结果。

1.5 Balls and Boxes

k个球 m个盒子 是否允许空盒子 方案数
各不相同 各不相同 \(m^k\)
各不相同 各不相同 \(m!stirling2(k,m)\)
各不相同 完全相同 \(\sum_{i=1}^{m}Stirling2(k,i)\)
各不相同 完全相同 \(Stirling2(k,m)\)
完全相同 各不相同 \(C_{m + k - 1}^{k-1}\)
完全相同 各不相同 \(C_{k-1}^{m-1}\)
完全相同 完全相同 \(\frac{1}{(1-x)(1-x^2)...(1-x^m)}\)
完全相同 完全相同 \(\frac{x^m}{(1-x)(1-x^2)...(1-x^3)}\)

1.6 Stirling2第二类斯特林数

\(S(p,k)\):将p个物体划分成k个非空的不可辨别的集合的方案数(第一类为划分为排列)。

\(S(p,k) = kS(p-1,k) + S(p-1,k-1)\)。

\(S(p,0) = 0,p >= 1,S(p,p) = 1\)。

卷积形式\(S(n,m) = \sum\limits_{k=0}^m\frac{(-1)^k}{k!}×\frac{(m-k)^n}{(m-k)!}\)。

1.7 组合恒等式

2.对称恒等式\(\binom{n}{k} = \binom{n}{n-k}\)。

3.吸收恒等式\(\binom{n}{k} = \frac{n}{k} \binom{n-1}{k-1}\)。

4.加法恒等式\(\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}\)。

5.三项式\(\binom{n}{m}\binom{m}{k} = \binom{n}{k}\binom{n-k}{m-k}\)。

6.平行求和\(\sum\limits_{k\leq m}\binom{n+k}{k} = \binom{n + m + 1}{m}\)。

7.范德蒙德卷积\(\sum\limits_{k}\binom{n}{k}\binom{m}{r-k} = \binom{n+m}{r}\)。

1.8 级数

\(\frac{1}{(1+x)^n} = C(n-1,n-1) + C(n,n-1)x + C(n+1,n-1)x^2 + ....C(2n,n-1)x^n\).

1.9 二项式反演

\(a(n) = \sum\limits_{i = 0}^{n}\binom{n}{i}b(i) \to b(n) = \sum\limits_{i = 0}^{n}(-1)^{n - i}\binom{n}{i}a(i)\)

1.10 Polya与Burnside

\(G\)是目标集\([1,n]\)上的置换群,\(c(a_k)\)是在置换\(a_k\)的作用下的不动点。

则等价类的个数等于\(\frac{1}{|G|} * \sum\limits_{i = 1}^gc(a_i)\)。

典型例子包括圆排列,只有一个置换有不动点,个数为n!,所以圆排列的数量要再除\(n\)(共有\(n\)个置换)。

一个置换对应若干个不相交的循环,记下循环的个数为\(\lambda(a_i)\)。

比如旋转这种最常见的操作,转i次对应的循环个数是\(gcd(i,n)\)。

Polya定理: \(L = \frac{1}{|G|}\sum\limits_{a_i \in G} m ^{\lambda(a_i)}\),\(m\) 是染色的颜色数。

2.Graph Theory

2.1独立集点覆盖匹配。

二分图:

最小路径覆盖 = 最大独立集 = 总结点数 - 最大匹配 。

最小点覆盖 = 最大匹配数。

任意图:

最大独立集 + 最小点覆盖 = 点数。

最大团 = 补图的最大独立集。

2.2 Matrix-Tree Theorem

\(diag(D)\)为点度数向量生成的对角矩阵,\(G_{xy}\)为邻接矩阵,则\(n-1\)阶子矩阵的行列式值\(det([diag(D) - G_{xy}]_{n-1})\)为生成树的个数。Clayey定理是特殊形式。

2.3平面图

\(F​\)为平面中的分割区域数,\(E​\)为边数,\(V​\)为点数,\(F = E- V +1​\)。

2.4 双连通分量

加最少多少条边使得图变成双连通分量。

缩点成树后计算叶子节点树。

3.Number Theory

3.1 积性函数

\(f(n)\)的定义为正整数域,值域为复数域,\(f(n)\)则为数论函数。

\(f(n)\)为数论函数,对于互质的整数\(p,q\)有$ f(p * q) = f(p) * f(q)$则为积性函数,没有互质条件限制时则被称为完全积性函数。

1.\(id(i) = i\) 单位函数 2.\(e(i) = [i = 1]\) 元函数。

3.\(d(i)\),\(i\)的约数个数 4.\(\sigma(i)\),\(i\)的约数和。

5.\(I(n) = 1\)恒等函数 6.\(\phi(n)\)欧拉函数。

7.\(\mu(n)\), 莫比乌斯函数 。

8.\(\sigma_k(n) = \sum_{d|n}d^k\)除数函数,n约数的k次幂和。

单位函数,元函数,单位函数的幂,恒等函数都是完全积性函数。

3.2积性函数性质

\(n = \sum\limits_{d|n}\phi(d)\)。

\(e(n) = \sum\limits_{d|n}\mu(d)\)。

3.3 Dirichlet Product

两个数论函数f和g的Dirichlet卷积为\((f*g)(n) = \sum_{d|n}f(d) * g(\frac{n}{d})\),Dirichlet卷积满足交换律,结合律,对加法满足分配律。

任意函数和元函数的Dirichlet卷积是函数本身。

恒等函数和莫比乌斯函数的Dirichlet卷积是元函数(3.2.1)。

恒等函数和欧拉函数的Dirichlet卷积是单位函数(3.2.2)。

两个积性函数的Dirichlet卷积是积性函数。

恒等函数\(I\)和莫比乌斯函数\(\mu\)在Dirichlet卷积意义下互为逆元,由此可以得到莫比乌斯反演\(g = f *I, g * \mu = f\)。

3.4恒等式与技巧

1.\(\sum_{i=1}^{n}\sigma_{k}(i) = \sum_{i = 1}^{n}\sum_{d|i}d^k = \sum_{d = 1}^nd^k\lfloor\frac{n}{d}\rfloor\)。

2.\([s = \emptyset] = \sum_{t \subset s}(-1)^{|t|}\)。

3.\(n = p^k \to \phi(n) = p^k - p^{k-1}\)。

4.\(s(n) = \sum_{i=1}^{n}i * \lfloor\frac{n}{i}\rfloor = \sum_{i = 1}^{n}\sigma(i)\)。

3.5 拓展欧拉定理

\(a^n \equiv a^{n \ mod \ \phi(p) + \phi(p)} (mod p), (n \geq \phi(p))\)。

3.7 反素数

对于任何正整数n,其约数个数记为\(d(n)\),如果任意\(i < n\), \(d(i) < d(n)\),则n被称为反素数,反素数的形式必定为\(n = 2^{t_1} * 3^{t_2} * 5^{t_3} *....\),并且,反\(t1 \geq t2 \geq t3 ....\),反素数的求解通常使用dfs。建的dfs树形式为,每层若干个节点表示的某个质因子的若干次方。

3.8 证明实例

1.计算\(\sum_{i = 1}^{m}\sum_{j = 1}^{n}gcd(i,j)\)。

$f(d) = \sum_{i = 1}^{n}\sum_{j = 1}^{m}[gcd(i,j) == d] $。

\(F(d) = \sum_{i = 1}^n\sum_{j = 1}^m[d | gcd(i,j)]\)。

显然\(F(d) = \sum\limits_{d|n} f(n)\),自然使用反演\(f(d) = \sum\limits_{d | n}F(n) * \mu(\frac{n}{d})\)。

通过常用的加速技巧,即可在\(O(\sqrt{n})\)时间内完成计算。

2.求第 \(n\) 个非完全平方数

先套一层二分,转化为求\(f(n) = \sum_{i = 1}^{n}\sum\limits_{d}[d * d == n]\)。

这会是一种莫比乌斯式的容斥,也可以构造类似于1的两个函数,筛法求解。

\(f(n) = \sum_{d = 1}^{\sqrt{n}}\mu(d)\lfloor\frac{n}{i^2}\rfloor\)。

3.\(f(n) = rad(n) * \phi(n), g(n) = \sum_{d|n}f(d),h(n) = \sum_{i = 1}^ng(i)\), \(rad(n)\) 是 \(n\) 的因子中最大的无平方因子的因子。

$n = \prod_{i = 1}^tp_i^{k_i} , $ \(rad(n) = \prod_{i = 1}^{t}p_i\)。

\((n,m) = 1,rad(n * m) = rad(n) * rad(m)\) 。

\(f(n)\)为积性函数。

\(g(n) = \sum_{d|n}f(d) = \prod_{i=1}^{t}\sum_{j = 0}^{k_i}f(p_i^j) = \prod_{i = 1}^t(1 + p_i *\sum_{j = 1}^{k_i}\phi(p_i^{j - 1})) = \prod_{i = 1}^t(p_i^{k_i} + 1)\)。

这个式子代表的含义是,每个质因子要么都选,要么都不选,得到的所有乘积。

\(g(n) = \sum_{d | n}[(d,\frac{n}{d}) = 1] * d = \sum_{i = 1}^{n}\sum_{j = 1}^n[(i,j) = 1] * [ij = n] * i\)。

###\(h(n) = \sum_{k=1}^{n}\sum_{i = 1}^{n}\sum_{j = 1}^n[(i,j) = 1] * [ij = k] * i\)。

\(h(n) = \sum_{i = 1}^{n}\sum_{j = 1}^n[(i,j) = 1] * [ij \leq k] * i\)。

\(h(n) = \sum_{i = 1}^{n}\sum_{j = 1}^{n}[ij\leq n]i\sum\limits_d[d | i][d | j] \mu(d)\)。

\(h(n) = \sum_{d = 1}^{\sqrt{n}}d\mu(d)\sum\limits_{i = 1}^{n}\sum\limits_{j = 1}^{n}[d | i][f | j][ij \leq n]\frac{i}{d}\)。

\(h(n) = \sum\limits_{d = 1}^{\sqrt{n}}d\mu(d)\sum\limits_{i = 1}^{\lfloor\frac{n}{d}\rfloor}\sum\limits_{j = 1}^{\lfloor\frac{n}{d}\rfloor}[ijd^2 \leq n]i\)。

\(h(n) = \sum\limits_{d = 1}^{\sqrt{n}}d\mu(d)\sum\limits_{i = 1}^{\lfloor\frac{n}{d^2}\rfloor}{\lfloor\frac{n}{i * d^2}}\rfloor i\)。

4.杜教筛

求\(f(n) = \sum_{i = 1}^n\phi(i)\)。

\(\sum_{i = 1}^{n}\sum_{d | i}\phi(d) = \frac{n(n + 1)}{2} = \sum_{i = 1}^{n}f(\lfloor\frac{n}{i}\rfloor) = \sum_{i = 1}^n\sum_{d = 1}^{\lfloor\frac{n}{i}\rfloor}\phi(d)\)。

4.Calculus

4.1调和级数。

\(\sum_{i = 1}^{n}\frac{1}{i}\)在 \(n\) 较大时等于\(ln n + r\)。欧拉常数\(r\) 为0.5772156649015328。若有精度问题,请加上 \(\frac{1}{2*n}\)

5.Others

5.1 皮克定理

给定顶点坐标均是整点的简单多边形,面积\(S\),内部格点\(n\),边上格点\(s\)。

三者的关系为\(S = n + \frac{s}{2} + 1\)。

5.2 幂和

\(\sum\limits_{i = 1}^{n}i = \frac{n(n+1)}{2}\)。

\(\sum\limits_{i=1}^{n}i^2 = \frac{n(n+1)(n+2)}{6}\)。

\(\sum\limits_{i=1}^{n}i^3 = [\frac{n(n+1)}{2}]^2\)。

$\sum\limits_{i=1}^n i^4 = \frac{n(n+1)(2n+1)(3n^2+3n-1)}{30} $。

\(\sum\limits_{i=1}^{n}i^5 = \frac{n^2(n+1)^2(2n^2+2n-1)}{12}\)。

5.3 计算几何

1.叉积和点积均具有关于向量加减的分配率。

2.多边形的面积等于所有点逆时针排序以后,相邻两个点的向量叉积的结果。

5.4 三角形面积

\(S = a * h / 2\)。

\(S = a * b *c / 4r\) : \(r\) 是外接圆的半径。

\(S = sqrt(p(p - a) * (p - b) *(p - c))\)。

5.5 牛顿迭代

\(x^{'} = x - \frac{f(x)}{f^{'}(x)}\)。

可以用来逼近\(sqrt(n)\)等。

Something-Summary的更多相关文章

  1. Summary of Critical and Exploitable iOS Vulnerabilities in 2016

    Summary of Critical and Exploitable iOS Vulnerabilities in 2016 Author:Min (Spark) Zheng, Cererdlong ...

  2. 三个不常用的HTML元素:<details>、<summary>、<dialog>

    前面的话 HTML5不仅新增了语义型区块级元素及表单类元素,也新增了一些其他的功能性元素,这些元素由于浏览器支持等各种原因,并没有被广泛使用 文档描述 <details>主要用于描述文档或 ...

  3. [LeetCode] Summary Ranges 总结区间

    Given a sorted integer array without duplicates, return the summary of its ranges. For example, give ...

  4. Network Basic Commands Summary

    Network Basic Commands Summary set or modify hostname a)     temporary ways hostname NEW_HOSTNAME, b ...

  5. Summary - SNMP Tutorial

    30.13 Summary Network management protocols allow a manager to monitor and control routers and hosts. ...

  6. Mac Brew Install Nginx Summary

    ==> Downloading https://homebrew.bintray.com/bottles/nginx-1.10.1.el_capitan.bot################# ...

  7. Leetcode: LFU Cache && Summary of various Sets: HashSet, TreeSet, LinkedHashSet

    Design and implement a data structure for Least Frequently Used (LFU) cache. It should support the f ...

  8. How to add taxonomy element to a summary view?

    [re: Orchard CMS] This caused me scratching my head for days and now I can even feel it's bleeding. ...

  9. (转) Summary of NIPS 2016

    转自:http://blog.evjang.com/2017/01/nips2016.html           Eric Jang Technology, A.I., Careers       ...

  10. leetcode-【中等题】228. Summary Ranges

    题目: 228. Summary Ranges Given a sorted integer array without duplicates, return the summary of its r ...

随机推荐

  1. W3C高级算法挑战之python实现

    最近在学python,网上很难找到对应的算法题网站,专业算法网站大部分都是国外的,之前在w3cschool看到有三个级别的Javascript脚本算法挑战,尝试用python实现,代码量相对比较少,如 ...

  2. Swift学习笔记(5)--数组

    数组的下标从0开始计数,相关方法属性涉及到下标时也从0开始计数 1.定义: //1.可变数组 var cityArray = ["Portland","San Franc ...

  3. java中TCP传输协议

    class TcpClient { public static void main(String[] args) throws Exception { //创建client的socket服务,指定目的 ...

  4. 转:关于ios 推送功能的终极解决

    刚刚做了一个使用推送功能的应用 遇到了一些问题整的很郁闷 搞了两天总算是弄明白了 特此分享给大家 本帖 主要是针对产品发布版本的一些问题 综合了网上一些资料根据自己实践写的 不过测试也可以看看 首先要 ...

  5. 原生js中获取this与鼠标对象以及vue中默认的鼠标对象参数

    1.通过原生js获取this对象 <!DOCTYPE html> <html> <head> <meta charset="utf-8" ...

  6. LuoguP2763 试题库问题(最大流)

    建图同_____ 代码: #include<queue> #include<cstdio> #include<cstring> #include<algori ...

  7. 玩转阿里云server——安装WebserverTomcat7

    1. 以root用户身份登录阿里云server 2. 使用apt-get install安装Tomcat7 sudo apt-get install tomcat7 3.安装后.Tomcat在启动时报 ...

  8. java——简单理解线程

    一·[概念]       一般来说,我们把正在计算机中运行的程序叫做"进程"(process),而不将其称为"程序"(program). 所谓"线程& ...

  9. [Java开发之路](16)学习log4j日志

    1. 新建一个Javaproject.导入Jar包(log4j-1.2.17.jar) Jar包下载地址:点击打开链接 2. 配置文件:创建并设置log4j.properties # 设置 log4j ...

  10. 公众平台调整SSL安全策略,请开发者注意升级

    公众平台调整SSL安全策略,请开发者注意升级 近一段时间HTTPS加密协议SSL曝出高危漏洞,可能导致网络中传输的数据被黑客监听,对用户信息.网络账号密码等安全构成威胁.为保证用户信息以及通信安全,微 ...