题目大意

\[\sum_{i=1}^{n}(k\mod i)
\]

\(n,k\leq 10^9\)。

题解

先只考虑\(n\leq k\)的情况。

\[\sum_{i=1}^{n}(k\mod i)=\sum_{i=1}^{n}k-i\lfloor \frac{k}{i}\rfloor=kn-\sum_{i=1}^{n}i\lfloor \frac{k}{i}\rfloor
\]

看到

\[\sum_{i=1}^{n}\lfloor \frac{k}{i}\rfloor
\]

则想到整除分块。

整除分块

结论:

\[\lfloor \frac{k}{i}\rfloor=\lfloor\frac{k}{\lfloor\frac{k}{\lfloor\frac{k}{i}\rfloor}\rfloor}\rfloor
\]

规律

当\(\lfloor\frac{k}{\lfloor\frac{k}{i}\rfloor}\rfloor\)一定时,所有满足上式的\(i\)都在一段连续的区间内(组成了一块),区间右端点是\(\lfloor\frac{k}{\lfloor\frac{k}{i}\rfloor}\rfloor\)。

因此操作时,直接对一块进行统一操作即可。

数学推导

令一块的左端点为\(l\),右端点为\(r\),\(v=\frac{k}{r}\),我们现在要求一块内的和

\[\sum_{i=l}^{r}iv=\sum_{i=0}^{r-l}v(l+i)=v\sum_{i=0}^{r-l}(l+i)
\]

此时注意:和式中运算的次数为\(r-l-0+1=r-l+1\),而不是\(r-l\)。所以接下来

\[原式\neq v(l(r-l)+\sum_{i=0}^{r-l}i)
\]

\[原式=v(l(r-l+1)+\sum_{i=0}^{r-l}i)
\]

在这里错了就完了!

最终运用等差数列的知识得到

\[原式=\frac{v(r+l)(r-l+1)}{2}
\]

把所有的上式加起来再被\(nk\)一减即可。

注意

边界条件:赋值\(r\)时,它不能直接等于\(\lfloor\frac{k}{\lfloor\frac{k}{i}\rfloor}\rfloor\),而应当是它和\(n\)的较小值。另外还要考虑\(\lfloor\frac{k}{i}\rfloor=0\)的情况。

对于\(n>k\)的情况,把额外值加上即可。要明确\(n-k\)以及\(k\)的含义呀!

#include <cstdio>
#include <cstring>
#include <cassert>
#include <algorithm>
using namespace std; #define ll long long int main()
{
ll n, k;
scanf("%lld%lld", &n, &k);
ll ans = 0, extra = 0;
if (n > k)
{
extra = (n - k) * k;
n = k;
}
for (ll l = 1, r; l <= n; l = r + 1)
{
int divVal;
r = (divVal = k / l) ? min(n, k / (k / l)) : n;
ans += divVal * ((r - l + 1) * (l + r) / 2);
assert(ans > 0);
}
printf("%lld\n", n * k - ans + extra);
return 0;
}

luogu2261 [CQOI2007] 余数之和的更多相关文章

  1. BZOJ 1257: [CQOI2007]余数之和sum

    1257: [CQOI2007]余数之和sum Time Limit: 5 Sec  Memory Limit: 162 MBSubmit: 3769  Solved: 1734[Submit][St ...

  2. bzoj 1257: [CQOI2007]余数之和sum 数学 && 枚举

    1257: [CQOI2007]余数之和sum Time Limit: 5 Sec  Memory Limit: 162 MBSubmit: 1779  Solved: 823[Submit][Sta ...

  3. BZOJ 1257: [CQOI2007]余数之和sum( 数论 )

    n >= k 部分对答案的贡献为 k * (n - k) n < k 部分贡献为 ∑ (k - ⌊k / i⌋ * i)  = ∑  , ⌊k / i⌋ 相等的数是连续的一段, 此时这段连 ...

  4. 1257: [CQOI2007]余数之和sum

    1257: [CQOI2007]余数之和sum Time Limit: 5 Sec  Memory Limit: 162 MBSubmit: 2001  Solved: 928[Submit][Sta ...

  5. BZOJ 1257: [CQOI2007]余数之和sum【神奇的做法,思维题】

    1257: [CQOI2007]余数之和sum Time Limit: 5 Sec  Memory Limit: 162 MBSubmit: 4474  Solved: 2083[Submit][St ...

  6. BZOJ_1257_ [CQOI2007]余数之和sum_数学

    BZOJ_1257_ [CQOI2007]余数之和sum_数学 题意:给出正整数n和k,计算j(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值. 分 ...

  7. BZOJ 1257: [CQOI2007]余数之和

    1257: [CQOI2007]余数之和 Time Limit: 5 Sec  Memory Limit: 128 MB Description 给出正整数n和k,计算j(n, k)=k mod 1 ...

  8. 1257: [CQOI2007]余数之和

    题目链接 bzoj1257: [CQOI2007]余数之和 题解 数论分块,乘等差数列求和 代码 #include<bits/stdc++.h> using namespace std; ...

  9. bzoj千题计划173:bzoj1257: [CQOI2007]余数之和sum

    http://www.lydsy.com/JudgeOnline/problem.php?id=1257 k%i=k-int(k/i)*i 除法分块,对于相同的k/i用等差序列求和来做 #includ ...

随机推荐

  1. 5.12redis

    Window配置Redis环境和简单使用 一.关于Redis Redis是一个开源(BSD许可),内存存储的数据结构服务器,可用作数据库,高速缓存和消息队列代理.它支持字符串.哈希表.列表.集合.有序 ...

  2. less 安装和webstorm的使用

    1.less 的安装 npm install -g less 2.less安装成功 3.less安装成功后,在webstorm中进行配置.file——>settings:弹出settings框, ...

  3. Shiny学习实践01

    Shiny是什么东东? 官方描述: Shiny is an R package that makes it easy to build interactive web apps straight fr ...

  4. 安卓代码迁移:Make.exe: *** [***.o]Error 1

    描述:NDK开发中显示,windows环境下NDK开发 解决办法:查找系统环境变量,找到关于Cygwin的环境变量或其他无效的环境变量删除处理.

  5. SLAM: Inverse Depth Parametrization for Monocular SALM

    首语: 此文实现客观的评测了使线性化的反转深度的效果.整篇只在表明反转可以线性化,解决距离增加带来的增长问题,有多少优势--%! 我的天呢!我竟然完整得翻译了一遍. 使用标记点地图构建SLAM的方法, ...

  6. Linux命令小记

    以下说法都是基于普通用户的角度,如果是root,可能会有不同. (1)rm -r或-R选项:递归删除目录及其内容(子目录.文件) rm默认无法删除目录,如果删除空目录,可以使用-d选项.如果目录非空, ...

  7. eclipse中导入maven项目:org.apache.maven.archiver.MavenArchiver.getManifest(org.apache.maven.proje

    org.codehaus.plexus.archiver.jar.Manifest.write(java.io.PrintWriter) 解决方法为:更新eclipse中的maven插件 1.help ...

  8. BZOJ 1577: [Usaco2009 Feb]庙会捷运Fair Shuttle 线段树 + 贪心

    escription 公交车一共经过N(1<=N<=20000)个站点,从站点1一直驶到站点N.K(1<=K<=50000)群奶牛希望搭乘这辆公交车.第i群牛一共有Mi(1&l ...

  9. 05.Python高级编程

    1 ==,is的使用 is 是比较两个引用是否指向了同一个对象(地址引用比较). == 是比较两个对象是否相等.(比较的数值) 2 深拷贝.浅拷贝.copy.copy 2.1 浅拷贝 浅拷贝: 拷贝的 ...

  10. 在MySQL的表中增加一列

    MySql中增加一列 如果想在一个已经建好的表中添加一列,可以用: alter table TABLE_NAME add column NEW_COLUMN_NAME varchar(45) not ...