luogu2261 [CQOI2007] 余数之和
题目大意
求
\]
\(n,k\leq 10^9\)。
题解
先只考虑\(n\leq k\)的情况。
\]
看到
\]
则想到整除分块。
整除分块
结论:
\]
规律
当\(\lfloor\frac{k}{\lfloor\frac{k}{i}\rfloor}\rfloor\)一定时,所有满足上式的\(i\)都在一段连续的区间内(组成了一块),区间右端点是\(\lfloor\frac{k}{\lfloor\frac{k}{i}\rfloor}\rfloor\)。
因此操作时,直接对一块进行统一操作即可。
数学推导
令一块的左端点为\(l\),右端点为\(r\),\(v=\frac{k}{r}\),我们现在要求一块内的和
\]
此时注意:和式中运算的次数为\(r-l-0+1=r-l+1\),而不是\(r-l\)。所以接下来
\]
\]
在这里错了就完了!
最终运用等差数列的知识得到
\]
把所有的上式加起来再被\(nk\)一减即可。
注意
边界条件:赋值\(r\)时,它不能直接等于\(\lfloor\frac{k}{\lfloor\frac{k}{i}\rfloor}\rfloor\),而应当是它和\(n\)的较小值。另外还要考虑\(\lfloor\frac{k}{i}\rfloor=0\)的情况。
对于\(n>k\)的情况,把额外值加上即可。要明确\(n-k\)以及\(k\)的含义呀!
#include <cstdio>
#include <cstring>
#include <cassert>
#include <algorithm>
using namespace std;
#define ll long long
int main()
{
ll n, k;
scanf("%lld%lld", &n, &k);
ll ans = 0, extra = 0;
if (n > k)
{
extra = (n - k) * k;
n = k;
}
for (ll l = 1, r; l <= n; l = r + 1)
{
int divVal;
r = (divVal = k / l) ? min(n, k / (k / l)) : n;
ans += divVal * ((r - l + 1) * (l + r) / 2);
assert(ans > 0);
}
printf("%lld\n", n * k - ans + extra);
return 0;
}
luogu2261 [CQOI2007] 余数之和的更多相关文章
- BZOJ 1257: [CQOI2007]余数之和sum
1257: [CQOI2007]余数之和sum Time Limit: 5 Sec Memory Limit: 162 MBSubmit: 3769 Solved: 1734[Submit][St ...
- bzoj 1257: [CQOI2007]余数之和sum 数学 && 枚举
1257: [CQOI2007]余数之和sum Time Limit: 5 Sec Memory Limit: 162 MBSubmit: 1779 Solved: 823[Submit][Sta ...
- BZOJ 1257: [CQOI2007]余数之和sum( 数论 )
n >= k 部分对答案的贡献为 k * (n - k) n < k 部分贡献为 ∑ (k - ⌊k / i⌋ * i) = ∑ , ⌊k / i⌋ 相等的数是连续的一段, 此时这段连 ...
- 1257: [CQOI2007]余数之和sum
1257: [CQOI2007]余数之和sum Time Limit: 5 Sec Memory Limit: 162 MBSubmit: 2001 Solved: 928[Submit][Sta ...
- BZOJ 1257: [CQOI2007]余数之和sum【神奇的做法,思维题】
1257: [CQOI2007]余数之和sum Time Limit: 5 Sec Memory Limit: 162 MBSubmit: 4474 Solved: 2083[Submit][St ...
- BZOJ_1257_ [CQOI2007]余数之和sum_数学
BZOJ_1257_ [CQOI2007]余数之和sum_数学 题意:给出正整数n和k,计算j(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值. 分 ...
- BZOJ 1257: [CQOI2007]余数之和
1257: [CQOI2007]余数之和 Time Limit: 5 Sec Memory Limit: 128 MB Description 给出正整数n和k,计算j(n, k)=k mod 1 ...
- 1257: [CQOI2007]余数之和
题目链接 bzoj1257: [CQOI2007]余数之和 题解 数论分块,乘等差数列求和 代码 #include<bits/stdc++.h> using namespace std; ...
- bzoj千题计划173:bzoj1257: [CQOI2007]余数之和sum
http://www.lydsy.com/JudgeOnline/problem.php?id=1257 k%i=k-int(k/i)*i 除法分块,对于相同的k/i用等差序列求和来做 #includ ...
随机推荐
- asp.net限制了上传文件大小为..M,解决方法
asp.net限制了上传文件大小为4M,在:在web.config里加下面一句,加在<System.web></System.web>之间如下:<system.web&g ...
- jQuery获取及设置单选框、多选框、文本框
获取一组radio被选中项的值 var item = $("input[@name=items][@checked]").val(); 获取select被选中项的文本 var it ...
- PHP序列化 反序列化
序列化是将变量转换为可保存或传输的字符串的过程:反序列化就是在适当的时候把这个字符串再转化成原来的变量使用.这两个过程结合起来,可以轻松地存储和传输数据,使程序更具维护性. 1. serialize和 ...
- wcf 错误:无法加载或初始化请求的服务提供程序
解决办法:cmd netsh winsock reset 恢复网络编程接口
- elasticsearch模板 template
https://elasticsearch.cn/article/335 elasticsearch模板 template 可以考虑的学习点: mapping的 _default_类型 动态模板:dy ...
- 3B课程笔记分享_StudyJams_2017
昨晚才发现 Study Jams China的官方论坛也支持MarkDown,所以直接发在了那上面.http://www.studyjamscn.com/thread-21807-1-1.html
- C# --MVC实现简单上传下载
首先创建一个默认的控制器Defaultcontroller 然后生成视图View 在视图里面 创建文件选择器 创建上传.下载按钮 代码如下 <body> <div> <f ...
- Pytorch实战(3)----分类
一.分类任务: 将以下两类分开. 创建数据代码: # make fake data n_data = torch.ones(100, 2) x0 = torch.normal(2*n_data, 1) ...
- hadoop中的job.setOutputKeyClass与job.setMapOutputKeyClass
初学mr时,觉得没什么,但是学了一段时间,重新复习时发现程序中mr程序中一般都会有 hadoop中的job.setOutputKeyClass(theClass)与job.setOutputValue ...
- windows的时间同步工具:w32time
windows 客户端 官方文档自己排查可以看一下 如何在 Windows Server 中配置权威时间服务器 Windows Time Service Technical Reference Win ...