题目大意

\[\sum_{i=1}^{n}(k\mod i)
\]

\(n,k\leq 10^9\)。

题解

先只考虑\(n\leq k\)的情况。

\[\sum_{i=1}^{n}(k\mod i)=\sum_{i=1}^{n}k-i\lfloor \frac{k}{i}\rfloor=kn-\sum_{i=1}^{n}i\lfloor \frac{k}{i}\rfloor
\]

看到

\[\sum_{i=1}^{n}\lfloor \frac{k}{i}\rfloor
\]

则想到整除分块。

整除分块

结论:

\[\lfloor \frac{k}{i}\rfloor=\lfloor\frac{k}{\lfloor\frac{k}{\lfloor\frac{k}{i}\rfloor}\rfloor}\rfloor
\]

规律

当\(\lfloor\frac{k}{\lfloor\frac{k}{i}\rfloor}\rfloor\)一定时,所有满足上式的\(i\)都在一段连续的区间内(组成了一块),区间右端点是\(\lfloor\frac{k}{\lfloor\frac{k}{i}\rfloor}\rfloor\)。

因此操作时,直接对一块进行统一操作即可。

数学推导

令一块的左端点为\(l\),右端点为\(r\),\(v=\frac{k}{r}\),我们现在要求一块内的和

\[\sum_{i=l}^{r}iv=\sum_{i=0}^{r-l}v(l+i)=v\sum_{i=0}^{r-l}(l+i)
\]

此时注意:和式中运算的次数为\(r-l-0+1=r-l+1\),而不是\(r-l\)。所以接下来

\[原式\neq v(l(r-l)+\sum_{i=0}^{r-l}i)
\]

\[原式=v(l(r-l+1)+\sum_{i=0}^{r-l}i)
\]

在这里错了就完了!

最终运用等差数列的知识得到

\[原式=\frac{v(r+l)(r-l+1)}{2}
\]

把所有的上式加起来再被\(nk\)一减即可。

注意

边界条件:赋值\(r\)时,它不能直接等于\(\lfloor\frac{k}{\lfloor\frac{k}{i}\rfloor}\rfloor\),而应当是它和\(n\)的较小值。另外还要考虑\(\lfloor\frac{k}{i}\rfloor=0\)的情况。

对于\(n>k\)的情况,把额外值加上即可。要明确\(n-k\)以及\(k\)的含义呀!

#include <cstdio>
#include <cstring>
#include <cassert>
#include <algorithm>
using namespace std; #define ll long long int main()
{
ll n, k;
scanf("%lld%lld", &n, &k);
ll ans = 0, extra = 0;
if (n > k)
{
extra = (n - k) * k;
n = k;
}
for (ll l = 1, r; l <= n; l = r + 1)
{
int divVal;
r = (divVal = k / l) ? min(n, k / (k / l)) : n;
ans += divVal * ((r - l + 1) * (l + r) / 2);
assert(ans > 0);
}
printf("%lld\n", n * k - ans + extra);
return 0;
}

luogu2261 [CQOI2007] 余数之和的更多相关文章

  1. BZOJ 1257: [CQOI2007]余数之和sum

    1257: [CQOI2007]余数之和sum Time Limit: 5 Sec  Memory Limit: 162 MBSubmit: 3769  Solved: 1734[Submit][St ...

  2. bzoj 1257: [CQOI2007]余数之和sum 数学 && 枚举

    1257: [CQOI2007]余数之和sum Time Limit: 5 Sec  Memory Limit: 162 MBSubmit: 1779  Solved: 823[Submit][Sta ...

  3. BZOJ 1257: [CQOI2007]余数之和sum( 数论 )

    n >= k 部分对答案的贡献为 k * (n - k) n < k 部分贡献为 ∑ (k - ⌊k / i⌋ * i)  = ∑  , ⌊k / i⌋ 相等的数是连续的一段, 此时这段连 ...

  4. 1257: [CQOI2007]余数之和sum

    1257: [CQOI2007]余数之和sum Time Limit: 5 Sec  Memory Limit: 162 MBSubmit: 2001  Solved: 928[Submit][Sta ...

  5. BZOJ 1257: [CQOI2007]余数之和sum【神奇的做法,思维题】

    1257: [CQOI2007]余数之和sum Time Limit: 5 Sec  Memory Limit: 162 MBSubmit: 4474  Solved: 2083[Submit][St ...

  6. BZOJ_1257_ [CQOI2007]余数之和sum_数学

    BZOJ_1257_ [CQOI2007]余数之和sum_数学 题意:给出正整数n和k,计算j(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值. 分 ...

  7. BZOJ 1257: [CQOI2007]余数之和

    1257: [CQOI2007]余数之和 Time Limit: 5 Sec  Memory Limit: 128 MB Description 给出正整数n和k,计算j(n, k)=k mod 1 ...

  8. 1257: [CQOI2007]余数之和

    题目链接 bzoj1257: [CQOI2007]余数之和 题解 数论分块,乘等差数列求和 代码 #include<bits/stdc++.h> using namespace std; ...

  9. bzoj千题计划173:bzoj1257: [CQOI2007]余数之和sum

    http://www.lydsy.com/JudgeOnline/problem.php?id=1257 k%i=k-int(k/i)*i 除法分块,对于相同的k/i用等差序列求和来做 #includ ...

随机推荐

  1. asp.net限制了上传文件大小为..M,解决方法

    asp.net限制了上传文件大小为4M,在:在web.config里加下面一句,加在<System.web></System.web>之间如下:<system.web&g ...

  2. jQuery获取及设置单选框、多选框、文本框

    获取一组radio被选中项的值 var item = $("input[@name=items][@checked]").val(); 获取select被选中项的文本 var it ...

  3. PHP序列化 反序列化

    序列化是将变量转换为可保存或传输的字符串的过程:反序列化就是在适当的时候把这个字符串再转化成原来的变量使用.这两个过程结合起来,可以轻松地存储和传输数据,使程序更具维护性. 1. serialize和 ...

  4. wcf 错误:无法加载或初始化请求的服务提供程序

    解决办法:cmd netsh winsock reset 恢复网络编程接口

  5. elasticsearch模板 template

    https://elasticsearch.cn/article/335 elasticsearch模板 template 可以考虑的学习点: mapping的 _default_类型 动态模板:dy ...

  6. 3B课程笔记分享_StudyJams_2017

    昨晚才发现 Study Jams China的官方论坛也支持MarkDown,所以直接发在了那上面.http://www.studyjamscn.com/thread-21807-1-1.html

  7. C# --MVC实现简单上传下载

    首先创建一个默认的控制器Defaultcontroller 然后生成视图View 在视图里面 创建文件选择器 创建上传.下载按钮 代码如下 <body> <div> <f ...

  8. Pytorch实战(3)----分类

    一.分类任务: 将以下两类分开. 创建数据代码: # make fake data n_data = torch.ones(100, 2) x0 = torch.normal(2*n_data, 1) ...

  9. hadoop中的job.setOutputKeyClass与job.setMapOutputKeyClass

    初学mr时,觉得没什么,但是学了一段时间,重新复习时发现程序中mr程序中一般都会有 hadoop中的job.setOutputKeyClass(theClass)与job.setOutputValue ...

  10. windows的时间同步工具:w32time

    windows 客户端 官方文档自己排查可以看一下 如何在 Windows Server 中配置权威时间服务器 Windows Time Service Technical Reference Win ...