本文介绍flume读取kafka数据的方法

代码:

/*******************************************************************************
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *  
 * http://www.apache.org/licenses/LICENSE-2.0
 *  
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 * KIND, either express or implied.  See the License for the
 * specific language governing permissions and limitations
 * under the License.
 *******************************************************************************/
package org.apache.flume.source.kafka;

import java.io.IOException;
import java.nio.ByteBuffer;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;

import kafka.consumer.ConsumerIterator;
import kafka.consumer.KafkaStream;
import kafka.javaapi.consumer.ConsumerConnector;
import kafka.message.Message;

import kafka.message.MessageAndMetadata;
import org.apache.flume.*;
import org.apache.flume.conf.Configurable;
import org.apache.flume.conf.ConfigurationException;
import org.apache.flume.event.SimpleEvent;
import org.apache.flume.source.AbstractSource;
import org.apache.flume.source.SyslogParser;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

/**
 * A Source for Kafka which reads messages from kafka. I use this in company production environment

 * and its performance is good. Over 100k messages per second can be read from kafka in one source.<p>
 * <tt>zookeeper.connect: </tt> the zookeeper ip kafka use.<p>
 * <tt>topic: </tt> the topic to read from kafka.<p>
 * <tt>group.id: </tt> the groupid of consumer group.<p>
 */
public class KafkaSource extends AbstractSource implements Configurable, PollableSource {
    private static final Logger log = LoggerFactory.getLogger(KafkaSource.class);
    private ConsumerConnector consumer;
    private ConsumerIterator<byte[], byte[]> it;
    private String topic;
    
    public Status process() throws EventDeliveryException {
        List<Event> eventList = new ArrayList<Event>();
        MessageAndMetadata<byte[],byte[]> message;
        Event event;
        Map<String, String> headers;
        String strMessage;
        try {
            if(it.hasNext()) {
                message = it.next();
                event = new SimpleEvent();
                headers = new HashMap<String, String>();
                headers.put("timestamp", String.valueOf(System.currentTimeMillis()));

                strMessage =  String.valueOf(System.currentTimeMillis()) + "|" + new String(message.message());
                log.debug("Message: {}", strMessage);

                event.setBody(strMessage.getBytes());
                //event.setBody(message.message());
                event.setHeaders(headers);
                eventList.add(event);
            }
            getChannelProcessor().processEventBatch(eventList);
            return Status.READY;
        } catch (Exception e) {
            log.error("KafkaSource EXCEPTION, {}", e.getMessage());
            return Status.BACKOFF;
        }
    }

    public void configure(Context context) {
        topic = context.getString("topic");
        if(topic == null) {
            throw new ConfigurationException("Kafka topic must be specified.");
        }
        try {
            this.consumer = KafkaSourceUtil.getConsumer(context);
        } catch (IOException e) {
            log.error("IOException occur, {}", e.getMessage());
        } catch (InterruptedException e) {
            log.error("InterruptedException occur, {}", e.getMessage());
        }
        Map<String, Integer> topicCountMap = new HashMap<String, Integer>();
        topicCountMap.put(topic, new Integer(1));
        Map<String, List<KafkaStream<byte[], byte[]>>> consumerMap = consumer.createMessageStreams(topicCountMap);
        if(consumerMap == null) {
            throw new ConfigurationException("topicCountMap is null");
        }
        List<KafkaStream<byte[], byte[]>> topicList = consumerMap.get(topic);
        if(topicList == null || topicList.isEmpty()) {
            throw new ConfigurationException("topicList is null or empty");
        }
        KafkaStream<byte[], byte[]> stream =  topicList.get(0);
        it = stream.iterator();
    }

    @Override
    public synchronized void stop() {
        consumer.shutdown();
        super.stop();
    }

}

/*******************************************************************************
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *  
 * http://www.apache.org/licenses/LICENSE-2.0
 *  
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 * KIND, either express or implied.  See the License for the
 * specific language governing permissions and limitations
 * under the License.
 *******************************************************************************/
package org.apache.flume.source.kafka;

import java.io.IOException;
import java.util.Map;
import java.util.Properties;

import com.google.common.collect.ImmutableMap;
import kafka.consumer.Consumer;
import kafka.consumer.ConsumerConfig;
import kafka.javaapi.consumer.ConsumerConnector;

import org.apache.flume.Context;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

public class KafkaSourceUtil {
    private static final Logger log = LoggerFactory.getLogger(KafkaSourceUtil.class);

    public static Properties getKafkaConfigProperties(Context context) {
        log.info("context={}",context.toString());
        Properties props = new Properties();
        ImmutableMap<String, String> contextMap = context.getParameters();
        for (Map.Entry<String,String> entry : contextMap.entrySet()) {
            String key = entry.getKey();
            if (!key.equals("type") && !key.equals("channel")) {
                props.setProperty(entry.getKey(), entry.getValue());
                log.info("key={},value={}", entry.getKey(), entry.getValue());
            }
        }
        return props;
    }
    public static ConsumerConnector getConsumer(Context context) throws IOException, InterruptedException {
        ConsumerConfig consumerConfig = new ConsumerConfig(getKafkaConfigProperties(context));
        ConsumerConnector consumer = Consumer.createJavaConsumerConnector(consumerConfig);
        return consumer;
    }
}

配置文件:( /etc/flume/conf/flume-kafka-file.properties)

agent_log.sources = kafka0
agent_log.channels = ch0
agent_log.sinks = sink0

agent_log.sources.kafka0.channels = ch0
agent_log.sinks.sink0.channel = ch0

agent_log.sources.kafka0.type = org.apache.flume.source.kafka.KafkaSource
agent_log.sources.kafka0.zookeeper.connect = node3:2181,node4:2181,node5:2181
agent_log.sources.kafka0.topic = kkt-test-topic
agent_log.sources.kafka0.group.id= test

agent_log.channels.ch0.type = memory
agent_log.channels.ch0.capacity = 2048
agent_log.channels.ch0.transactionCapacity = 1000

agent_log.sinks.sink0.type=file_roll
agent_log.sinks.sink0.sink.directory=/data/flumeng/data/test
agent_log.sinks.sink0.sink.rollInterval=300

启动脚本:

sudo su  -l -s /bin/bash  flume  -c '/usr/lib/flume/bin/flume-ng agent --conf /etc/flume/conf --conf-file /etc/flume/conf/flume-kafka-file.properties -name agent_log -Dflume.root.logger=INFO,console '

注意: 红色字体的功能是对原来数据增加时间戳

            版本号 flume-1.4.0.2.1.1.0 + kafka2.8.0-0.8.0

            參考资料:https://github.com/baniuyao/flume-kafka

             编译用到的库:

            flume-ng-configuration-1.4.0.2.1.1.0-385

            flume-ng-core-1.4.0.2.1.1.0-385

            flume-ng-sdk-1.4.0.2.1.1.0-385

            flume-tools-1.4.0.2.1.1.0-385

            guava-11.0.2

            kafka_2.8.0-0.8.0

            log4j-1.2.15

            scala-compiler

            scala-library

            slf4j-api-1.6.1

            slf4j-log4j12-1.6.1

            zkclient-0.3

            zookeeper-3.3.4

                

flume 读取kafka 数据的更多相关文章

  1. spark读取kafka数据 createStream和createDirectStream的区别

    1.KafkaUtils.createDstream 构造函数为KafkaUtils.createDstream(ssc, [zk], [consumer group id], [per-topic, ...

  2. SparkStreaming直连方式读取kafka数据,使用MySQL保存偏移量

    SparkStreaming直连方式读取kafka数据,使用MySQL保存偏移量 1. ScalikeJDBC 2.配置文件 3.导入依赖的jar包 4.源码测试 通过MySQL保存kafka的偏移量 ...

  3. Flume下读取kafka数据后再打把数据输出到kafka,利用拦截器解决topic覆盖问题

    1:如果在一个Flume Agent中同时使用Kafka Source和Kafka Sink来处理events,便会遇到Kafka Topic覆盖问题,具体表现为,Kafka Source可以正常从指 ...

  4. 使用Flume消费Kafka数据到HDFS

    1.概述 对于数据的转发,Kafka是一个不错的选择.Kafka能够装载数据到消息队列,然后等待其他业务场景去消费这些数据,Kafka的应用接口API非常的丰富,支持各种存储介质,例如HDFS.HBa ...

  5. 使用flume将kafka数据sink到HBase【转】

    1. hbase sink介绍 1.1 HbaseSink 1.2 AsyncHbaseSink 2. 配置flume 3. 运行测试flume 4. 使用RegexHbaseEventSeriali ...

  6. flink 读取kafka 数据,partition分配

    每个并发有个编号,只会读取kafka partition  % 总并发数 == 编号 的分区   如: 6 分区, 4个并发 分区: p0 p1 p2 p3 p4 p5 并发: 0 1 2 3    ...

  7. Logstash读取Kafka数据写入HDFS详解

    强大的功能,丰富的插件,让logstash在数据处理的行列中出类拔萃 通常日志数据除了要入ES提供实时展示和简单统计外,还需要写入大数据集群来提供更为深入的逻辑处理,前边几篇ELK的文章介绍过利用lo ...

  8. 使用spark-streaming实时读取Kafka数据统计结果存入MySQL

    在这篇文章里,我们模拟了一个场景,实时分析订单数据,统计实时收益. 场景模拟 我试图覆盖工程上最为常用的一个场景: 1)首先,向Kafka里实时的写入订单数据,JSON格式,包含订单ID-订单类型-订 ...

  9. SparkStreaming python 读取kafka数据将结果输出到单个指定本地文件

    # -*- coding: UTF-8 -*- #!/bin/env python3 # filename readFromKafkaStreamingGetLocation.py import IP ...

随机推荐

  1. MyEclipse报错Access restriction: The type BASE64Encoder is not accessible due to restriction on required library

    错误截图: 解决办法: 1.进入Project --> Properties --> Java Build Path --> Libraries 2.remove 掉 JRE Sys ...

  2. Vue 做项目经验

    Vue 做项目经验 首先需要知道最基本的东西是: Vue 项目打包:npm run build Vue生成在网页上看的端口:npm run dev 修改端口号的地方在: config文件夹下index ...

  3. ubuntu设置PATH

    试了好多遍,多无效.. 最后在/etc/enviroment下设置才有效. 不过让有一些未解问题 我使用sudo su 进入到root用户权限,设置完成的. 重新使用sudo -s进入root用户权限 ...

  4. PatentTips - Increasing turbo mode residency of a processor

    BACKGROUND Many modern operating systems (OS's) use the Advanced Configuration and Power Interface ( ...

  5. cf #257(Div.2) A. Jzzhu and Children

    A. Jzzhu and Children time limit per test 1 second memory limit per test 256 megabytes input standar ...

  6. 【IPC进程间通讯之三】内存映射文件Mapping File

    IPC进程间通信+共享内存Mapping                IPC(Inter-Process Communication.进程间通信).         文件映射(Mapping)是一种 ...

  7. Recovering unassigned shards on elasticsearch 2.x——副本shard可以设置replica为0在设置回来

    Recovering unassigned shards on elasticsearch 2.x 摘自:https://z0z0.me/recovering-unassigned-shards-on ...

  8. 集群节点Elasticsearch升级

    集群节点Elasticsearch升级 操作流程 1.首先执行Elasticsearch-1.2.2集群的索引数据备份 2.关闭elasticsearch-1.2.2集群的recovery.compr ...

  9. Oracle RAC集群体系结构

    一. Oracle集群体系结构 Oracle RAC,全称是Oracle Real Application Cluster,即真正的应用集群,是oracle提供的一个并行集群系统,整个集群系统由Ora ...

  10. MYSQL主从复制搭建及切换操作(GTID与传统)

    结构如下: MYSQL主从复制方式有默认的复制方式异步复制,5.5版本之后半同步复制,5.6版本之后新增GTID复制,包括5.7版本的多源复制. MYSQL版本:5.7.20 操作系统版本:linux ...