题目链接:https://cn.vjudge.net/problem/UVA-10003

题意

有根棍子,上面有些分割点(n<50),每次按分割点切割棍子时,费用为当前棍子的长度。

问有什么样的顺序,使总费用最小。

思路

简单题,设dp[i][j]为在分割点ij之间棍子的最小切割费用。

有转移方程dp[i][j]=min( dp[i][k]+dp[k][j] )+pos[j]-pos[i]

注意边界条件dp[i][i+1]=0意思是i~i+1之间不需要切割费用。

提交过程

WA 边界条件给错
WA 输出错
AC

代码

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxn=50+20, INF=0x3f3f3f3f;
int n, l;
int pos[maxn], data[maxn][maxn];
int dp(int l, int r){
if (r<=l+1) return 0;
if (data[l][r]) return data[l][r]; data[l][r]=INF;
for (int k=l+1; k<r; k++)
data[l][r]=min(data[l][r], dp(l, k)+dp(k, r));
return data[l][r]+=pos[r]-pos[l];
} int main(void){
while (scanf("%d", &l)==1 && l){
memset(data, 0, sizeof(data));
scanf("%d", &n);
pos[0]=0; pos[n+1]=l;
for (int i=1; i<=n; i++)
scanf("%d", &pos[i]);
printf("The minimum cutting is %d.\n", dp(0, n+1));
} return 0;
}
Time Memory Length Lang Submitted
150ms 691 C++ 5.3.0 2018-08-06 09:13:55

UVA-10003 Cutting Sticks 动态规划 找分界点k的动规的更多相关文章

  1. UVA 10003 Cutting Sticks 区间DP+记忆化搜索

    UVA 10003 Cutting Sticks+区间DP 纵有疾风起 题目大意 有一个长为L的木棍,木棍中间有n个切点.每次切割的费用为当前木棍的长度.求切割木棍的最小费用 输入输出 第一行是木棍的 ...

  2. uva 10003 Cutting Sticks 【区间dp】

    题目:uva 10003 Cutting Sticks 题意:给出一根长度 l 的木棍,要截断从某些点,然后截断的花费是当前木棍的长度,求总的最小花费? 分析:典型的区间dp,事实上和石子归并是一样的 ...

  3. uva 10003 Cutting Sticks(区间DP)

    题目连接:10003 - Cutting Sticks 题目大意:给出一个长l的木棍, 再给出n个要求切割的点,每次切割的代价是当前木棍的长度, 现在要求输出最小代价. 解题思路:区间DP, 每次查找 ...

  4. UVA 10003 Cutting Sticks(区间dp)

    Description    Cutting Sticks  You have to cut a wood stick into pieces. The most affordable company ...

  5. UVA 10003 Cutting Sticks

    题意:在给出的n个结点处切断木棍,并且在切断木棍时木棍有多长就花费多长的代价,将所有结点切断,并且使代价最小. 思路:设DP[i][j]为,从i,j点切开的木材,完成切割需要的cost,显然对于所有D ...

  6. UVa 10003 - Cutting Sticks(区间DP)

    链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  7. UVA 10003 Cutting Sticks 切木棍 dp

    题意:把一根木棍按给定的n个点切下去,每次切的花费为切的那段木棍的长度,求最小花费. 这题出在dp入门这边,但是我看完题后有强烈的既是感,这不是以前做过的石子合并的题目变形吗? 题目其实就是把n+1根 ...

  8. UVA - 10003 Cutting Sticks(切木棍)(dp)

    题意:有一根长度为L(L<1000)的棍子,还有n(n < 50)个切割点的位置(按照从小到大排列).你的任务是在这些切割点的位置处把棍子切成n+1部分,使得总切割费用最小.每次切割的费用 ...

  9. uva 10003 Cutting Sticks (区间dp)

    本文出自   http://blog.csdn.net/shuangde800 题目链接:  打开 题目大意 一根长为l的木棍,上面有n个"切点",每个点的位置为c[i] 要按照一 ...

随机推荐

  1. ZBrush软件中Brush特性

    在ZBrush里给用户提供了上百种用于雕刻的笔刷,每种笔刷的显示模式是以红色的两个圆圈,外面的圆圈表示笔刷在进行绘制和雕刻实际影响的范围,而内圆是表示笔刷强度到外圆的衰减的起始位置,可以在Focal ...

  2. Linux后台开发应该具备技能

    一.linux和os: 1.命令:netstat tcpdump ipcs ipcrm 这四个命令的熟练掌握程度基本上能体现实际开发和调试程序的经验 2.cpu 内存 硬盘 等等与系统性能调试相关的命 ...

  3. Parse error: syntax error, unexpected '__data' (T_STRING), expecting ',' or ')'

    使用laravel时,建立view文件引入dafault文件时报错: Parse error: syntax error, unexpected '__data' (T_STRING), expect ...

  4. [读书笔记] Python 数据分析 (十一)经济和金融数据应用

    resample: 重采样函数,可以按照时间来提高或者降低采样频率,fill_method可以使用不同的填充方式. pandas.data_range 的freq参数枚举: Alias Descrip ...

  5. python 多列表对应的位置的值形成一个新的列表

    list1 = [1, 2, 3, 4, 5] list2 = ['a','b', 'c', 'd', 'e'] list3 = [1, 2, 3, 4, 5] multi_list = map(li ...

  6. C# 上位机的USB设备拔插检测

    我们做USB通信时,通信成功后,往往要检测USB设备的拔插状态,这里就USB拔插进行一下说明. 参考:https://www.imooc.com/article/17438 先说明一下,我这里只是用C ...

  7. Nginx +Tomcat 实现动静态分离(转)

    Nginx +Tomcat 实现动静态分离 动静态分离就是Nginx处理客户端的请求的静态页面(html页面)或者图片,Tomcat处理客户端请求的动态页面(jsp页面),因为Nginx处理的静态页面 ...

  8. java Timer定时器管理类

    1.java timer类,定时器类.启动执行定时任务方法是timer.schedule(new RemindTask(), seconds*1000);俩参数分别是TimerTask子类,具体执行定 ...

  9. linux 下面avr开发环境的安装

    (1)安装开发工具链 yum install avr-* 会安装以下的工具 avr-gcc-4.7.2-1.fc17.i686avr-libc-1.8.0-2.fc17.noarchavr-binut ...

  10. Vitual Router in The Cloud

    VyOS and ESXi,VyOS Configuration The next step is to configure both VyOS routers. Before we do, we s ...