BZOJ 5254 [Fjwc2018]红绿灯 (线段树)
题目大意:一个wly从家走到学校要经过n个红绿灯,绿灯持续时间是$g$,红灯是$r$,所有红绿灯同时变红变绿,交通规则和现实中一样,不能抢红灯,两个红绿灯之间道路的长度是$di$,一共$Q$个询问,求他在$k$时刻出发到达学校的时间$(Q<=5*10^4)$
终于过了..jdr是真的duliu
搞了半个多下午才看懂题解
首先总路程一定大于等于$\sum d_{i}$,所以求出等红灯的总时间就行了
红绿灯的周期是$(g+r)$,所以 超过$g+r$的道路 或者 询问的时刻$k$ ,直接取模$(g+r)$即可
定义$f[i]$表示第一次在第i个位置停下(被红灯卡住),然后等变绿以后,再走到终点的路程中,等红灯的总时间
如果我们求出了$f[i]$,那么对于每个询问,只需要找出在时刻$k$出发,第一个停下的位置就行了
如果在第$i$个位置停下,设下一个停下的位置是$j$,显然$j$是唯一的
维护一个权值线段树,值域是$[0,g+r)$,表示在x时刻出发,第一次停下的位置是$a_{x}$,由于是找出第一次停下的位置,所以倒序枚举红绿灯
如果$x$时刻出发能够在位置i停下,可得$g<=(x+dis[i])<=g+r-1$,即到达i之后恰好是红灯
然后把在线段树内把$x$的可行区间全都修改成$i$
而$f[i]$可以通过在线段树里找$-dis[i]$,得到$i$下一个停下的位置$j$
统计答案算一下总路程加上等红灯的额外时间就行了
权值可能很大需要动态开点
#include <cstdio>
#include <cstring>
#include <algorithm>
#define NN 101000
#define ll long long
using namespace std; int n,m,g,r,root;
int d[NN];
ll dis[NN],f[NN];
struct Seg{
int tag[NN*],val[NN*],ls[NN*],rs[NN*],tot;
void pushdown(int rt){
if(!tag[rt]) return;
if(!ls[rt]) ls[rt]=++tot;
if(!rs[rt]) rs[rt]=++tot;
val[ls[rt]]=val[rs[rt]]=tag[rt];
tag[ls[rt]]=tag[rs[rt]]=tag[rt];
tag[rt]=;
}
void update(int L,int R,int l,int r,int &rt,int w)
{
if(!rt) rt=++tot;
if(L<=l&&r<=R){tag[rt]=w,val[rt]=w;return;}
int mid=(l+r)>>;pushdown(rt);
if(L<=mid) update(L,R,l,mid,ls[rt],w);
if(R>mid) update(L,R,mid+,r,rs[rt],w);
//pushup(rt);
}
int query(int x,int l,int r,int rt)
{
if(!rt) return ;
if(l==r) return val[rt];
int mid=(l+r)>>;pushdown(rt);
if(x<=mid) return query(x,l,mid,ls[rt]);
else return query(x,mid+,r,rs[rt]);
//pushup(rt);
}
}s; int main()
{
scanf("%d%d%d",&n,&g,&r);
const int ma=g+r;
ll tot=;
for(int i=;i<=n+;i++){
scanf("%d",&d[i]);
tot+=d[i];d[i]%=ma;
dis[i]=dis[i-]+d[i];
}
ll L,R,w;int x,y;
root=,s.tot=;
for(int i=n;i>=;i--)
{
L=((g-dis[i])%ma+ma)%ma;
R=((g+r--dis[i])%ma+ma)%ma;
w=((-dis[i])%ma+ma)%ma;
x=s.query(w,,ma-,root);
f[i]=f[x]+(x?ma-(dis[x]-dis[i])%ma:);
if(L<=R){
s.update(L,R,,ma-,root,i);
}else{
s.update(,R,,ma-,root,i);
s.update(L,ma-,,ma-,root,i);
}
}
int Q;
scanf("%d",&Q);
for(int q=;q<=Q;q++)
{
scanf("%d",&x);
y=s.query(x%ma,,ma-,root);
ll ret;
if(!y) ret=x+tot;
else ret=tot+f[y]+x+(ma-(x+dis[y])%ma);
printf("%lld\n",ret);
}
return ;
}
BZOJ 5254 [Fjwc2018]红绿灯 (线段树)的更多相关文章
- Bzoj 2752 高速公路 (期望,线段树)
Bzoj 2752 高速公路 (期望,线段树) 题目链接 这道题显然求边,因为题目是一条链,所以直接采用把边编上号.看成序列即可 \(1\)与\(2\)号点的边连得是. 编号为\(1\)的点.查询的时 ...
- BZOJ.3938.Robot(李超线段树)
BZOJ UOJ 以时间\(t\)为横坐标,位置\(p\)为纵坐标建坐标系,那每个机器人就是一条\(0\sim INF\)的折线. 用李超线段树维护最大最小值.对于折线分成若干条线段依次插入即可. 最 ...
- BZOJ.1558.[JSOI2009]等差数列(线段树 差分)
BZOJ 洛谷 首先可以把原序列\(A_i\)转化成差分序列\(B_i\)去做. 这样对于区间加一个等差数列\((l,r,a_0,d)\),就可以转化为\(B_{l-1}\)+=\(a_0\),\(B ...
- BZOJ 3779: 重组病毒(线段树+lct+树剖)
题面 escription 黑客们通过对已有的病毒反编译,将许多不同的病毒重组,并重新编译出了新型的重组病毒.这种病毒的繁殖和变异能力极强.为了阻止这种病毒传播,某安全机构策划了一次实验,来研究这种病 ...
- BZOJ 3123 森林(函数式线段树)
题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=3123 题意: 思路:总的来说,查询区间第K小利用函数式线段树的减法操作.对于两棵树的合并 ...
- BZOJ 2124等差子序列 线段树&&hash
[题目描述 Description] 给一个 1 到 N 的排列{Ai},询问是否存在 1<=p1<p2<p3<p4<p5<…<pLen<=N(Len& ...
- Bzoj 3747: [POI2015]Kinoman 线段树
3747: [POI2015]Kinoman Time Limit: 60 Sec Memory Limit: 128 MBSubmit: 553 Solved: 222[Submit][Stat ...
- BZOJ 3155: Preprefix sum( 线段树 )
刷刷水题... 前缀和的前缀和...显然树状数组可以写...然而我不会, 只能写线段树了 把改变成加, 然后线段树维护前缀和, 某点p加, 会影响前缀和pre(x)(p≤x≤n), 对[p, n]这段 ...
- bzoj 1307/1318 玩具 线段树+记录时间戳
玩具 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 743 Solved: 404[Submit][Status][Discuss] Descrip ...
随机推荐
- ZBrush中的布料技巧分享
今天主要给大家介绍一种在ZBrush®3D图形绘制软件中创建特定类型的布料的技巧,这种方法简单却非常强大. 这个想法源自下面这张图: 我们今天所要讲的技巧可能不是实现复杂的服装设计最有效的方法,但确实 ...
- underscore的简单了解
1.underscore:一个封装好的js工具库,它提供了一整套函数式编程的使用功能,但是没有扩展任何js内置对象.它解决了这个问题:如果我面对一个空白的HTML,并希望立即开始工作,我需要什么? 2 ...
- why updating the Real DOM is slow, what is Virtaul DOM, and how updating Virtual DOM increase the performance?
个人翻译: Updating a DOM is not slow, it is just like updating any JavaScript object; then what exactly ...
- MyEclipse报错Access restriction: The type BASE64Encoder is not accessible due to restriction on required library
错误截图: 解决办法: 1.进入Project --> Properties --> Java Build Path --> Libraries 2.remove 掉 JRE Sys ...
- [WPF] 圆形等待效果
原文:[WPF] 圆形等待效果 自己做着玩儿的,留着以后用,效果类似下面的 GIF 动画. <Grid Width="35" Height="35"> ...
- JavaScript中的基础测试题
Java ...
- Linux网络编程(3)——多进程、多线程
在我的里面已经介绍了linux以下c的进程.线程接口,这里就不做过多阐述了. 多进程 这里多进程採用传统的多进程模型.每当有client发来的连接时创建一个进程来处理连接,一个子进程相应一个连接. 有 ...
- 关于sql中的with(nolock)
SQL Server 中的 NOLOCK 究竟是什么意思 一般用于此类语句中:select * from t with(NOLOCK) nolock是不加锁查询.能够读取被事务锁定的数据,也称为脏读. ...
- GitHub客户端和Shell的基本操作和理解
GitHub客户端和Shell指令的简单实用 客户端操作, web端操作, shell指令操作. 掌握了这三种操作,基本上就可以很好的运用gitHub了. 创建项目, 可以通过web端进行创建. 可以 ...
- HTTP学习记录
title: HTTP学习记录 toc: true date: 2018-09-21 20:40:48 HTTP协议,HyperText Transfer Protocol,超文本传输协议,是因特网上 ...