3809: Gty的二逼妹子序列

Time Limit: 80 Sec  Memory Limit: 28 MB
Submit: 1072  Solved: 292
[Submit][Status][Discuss]

Description

Autumn和Bakser又在研究Gty的妹子序列了!但他们遇到了一个难题。
对于一段妹子们,他们想让你帮忙求出这之内美丽度∈[a,b]的妹子的美丽度的种类数。
为了方便,我们规定妹子们的美丽度全都在[1,n]中。
给定一个长度为n(1<=n<=100000)的正整数序列s(1<=si<=n),对于m(1<=m<=1000000)次询问“l,r,a,b”,每次输出sl...sr中,权值∈[a,b]的权值的种类数。

Input

第一行包括两个整数n,m(1<=n<=100000,1<=m<=1000000),表示数列s中的元素数和询问数。
第二行包括n个整数s1...sn(1<=si<=n)。
接下来m行,每行包括4个整数l,r,a,b(1<=l<=r<=n,1<=a<=b<=n),意义见题目描述。
保证涉及的所有数在C++的int内。
保证输入合法。

Output

对每个询问,单独输出一行,表示sl...sr中权值∈[a,b]的权值的种类数。

Sample Input

10 10
4 4 5 1 4 1 5 1 2 1
5 9 1 2
3 4 7 9
4 4 2 5
2 3 4 7
5 10 4 4
3 9 1 1
1 4 5 9
8 9 3 3
2 2 1 6
8 9 1 4

Sample Output

2
0
0
2
1
1
1
0
1
2

HINT

样例的部分解释:
5 9 1 2
子序列为4 1 5 1 2
在[1,2]里的权值有1,1,2,有2种,因此答案为2。
3 4 7 9
子序列为5 1
在[7,9]里的权值有5,有1种,因此答案为1。
4 4 2 5
子序列为1
没有权值在[2,5]中的,因此答案为0。
2 3 4 7
子序列为4 5
权值在[4,7]中的有4,5,因此答案为2。
建议使用输入/输出优化。

Source

Solution

分块+莫队

很好想,一开始看错题,没写莫队,直接分块+lower_bound然后发现过不了样例...

其实挺好想,对权值分块,带上莫队搞搞就好...

启发:

序列操作统计颜色,可以优先往分块+莫队上搞

莫队的时候,询问的排序很关键..(手误打反了第1,2关键字,居然能过3组..)

Code

#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<cstdio>
using namespace std;
int read()
{
int x=,f=; char ch=getchar();
while (ch<'' || ch>'') {if (ch=='-') f=-; ch=getchar();}
while (ch>='' && ch<='') {x=x*+ch-''; ch=getchar();}
return x*f;
}
#define maxn 100010
#define maxm 1000100
int n,m,a[maxn],pos[maxn],num[maxn],an[maxn],bll,bln;
struct Asknode
{
int l,r,a,b,id;
bool operator < (const Asknode & A) const
{
if (pos[l]==pos[A.l]) return r<A.r;
return l<A.l;
}
}q[maxm];
int ans[maxm],qn;
int Query(int l,int r)
{
int ans=;
if (pos[l]==pos[r])
for (int i=l; i<=r; i++) if (num[i]) ans++; else continue;
else
{
for (int i=l; i<=pos[l]*bll; i++) if (num[i]) ans++;
for (int i=(pos[r]-)*bll+; i<=r; i++) if (num[i]) ans++;
}
for (int i=pos[l]+; i<=pos[r]-; i++) ans+=an[i];
return ans;
}
void move1(int x)
{
num[a[x]]--; if (num[a[x]]==) an[pos[a[x]]]--;
}
void move2(int x)
{
num[a[x]]++; if (num[a[x]]==) an[pos[a[x]]]++;
}
int nl=,nr=;
void work(int x)
{
int L=q[x].l,R=q[x].r,id=q[x].id;
while (nl<L) move1(nl),nl++;
while (nr>R) move1(nr),nr--;
while (nl>L) nl--,move2(nl);
while (nr<R) nr++,move2(nr);
ans[id]=Query(q[x].a,q[x].b);
// printf("%d %d %d %d %d\n",x,L,R,id,ans[id]);
}
int main()
{
n=read(),m=read(); bll=sqrt(n/); if (n%bll) bln=n/bll+; else bln=n/bll;
// printf("%d %d\n",bll,bln);
for (int i=; i<=n; i++) a[i]=read(),pos[i]=(i-)/bll+;
// for (int i=1; i<=n; i++) printf("%d\n",pos[i]);
for (int i=; i<=m; i++)
q[i].l=read(),q[i].r=read(),q[i].a=read(),q[i].b=read(),q[i].id=i;
sort(q+,q+m+);
for (int i=; i<=m; i++) work(i);
for (int i=; i<=m; i++) printf("%d\n",ans[i]);
return ;
}

%%%Gty大哥,%%%块爷,%%%Basker学长

前排围观自己的傻逼错误:

【BZOJ-3809】Gty的二逼妹子序列 分块 + 莫队算法的更多相关文章

  1. bzoj 3809 Gty的二逼妹子序列(莫队算法,块状链表)

    [题意] 回答若干个询问,(l,r,a,b):区间[l,r]内权值在[a,b]的数有多少[种]. [思路] 考虑使用块状链表实现莫队算法中的插入与删除. 因为权值处于1..n之间,所以我们可以建一个基 ...

  2. BZOJ.3809.Gty的二逼妹子序列(分块 莫队)

    题目链接 /* 25832 kb 26964 ms 莫队+树状数组:增加/删除/查询 都是O(logn)的,总时间复杂度O(m*sqrt(n)*logn),卡不过 莫队+分块:这样查询虽然变成了sqr ...

  3. BZOJ 3809 Gty的二逼妹子序列(莫队+分块)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3809 [题目大意] 给定一个长度为n(1<=n<=100000)的正整数序 ...

  4. 【BZOJ 3809】 3809: Gty的二逼妹子序列 (莫队+分块)

    3809: Gty的二逼妹子序列 Time Limit: 80 Sec  Memory Limit: 28 MBSubmit: 1728  Solved: 513 Description Autumn ...

  5. BZOJ 3809: Gty的二逼妹子序列

    3809: Gty的二逼妹子序列 Time Limit: 80 Sec  Memory Limit: 28 MBSubmit: 1387  Solved: 400[Submit][Status][Di ...

  6. Bzoj 3809: Gty的二逼妹子序列 莫队,分块

    3809: Gty的二逼妹子序列 Time Limit: 35 Sec  Memory Limit: 28 MBSubmit: 868  Solved: 234[Submit][Status][Dis ...

  7. [bzoj3809]Gty的二逼妹子序列_莫队_分块

    Gty的二逼妹子序列 bzoj-3809 题目大意:给定一个n个正整数的序列,m次询问.每次询问一个区间$l_i$到$r_i$中,权值在$a_i$到$b_i$之间的数有多少个. 注释:$1\le n\ ...

  8. BZOJ 3809 Gty的二逼妹子序列 莫队算法+分块

    Description Autumn和Bakser又在研究Gty的妹子序列了!但他们遇到了一个难题. 对于一段妹子们,他们想让你帮忙求出这之内美丽度∈[a,b]的妹子的美丽度的种类数. 为了方便,我们 ...

  9. [ AHOI 2013 ] 作业 & [ BZOJ 3809 ] Gty的二逼妹子序列

    \(\\\) Description 给出一个长为 \(n\) 的数列 \(A\) 和 \(k\),多次询问: 对于一个区间 \([L_i,R_i]\),问区间内有多少个数在 \([a_i,b_i]\ ...

随机推荐

  1. Java 集合系列03之 ArrayList详细介绍(源码解析)和使用示例

    概要 上一章,我们学习了Collection的架构.这一章开始,我们对Collection的具体实现类进行讲解:首先,讲解List,而List中ArrayList又最为常用.因此,本章我们讲解Arra ...

  2. css中如何设置字体

    来自百度的回答: 建议使用font-family: "Microsoft YaHei";支持UTF-8和GB2312字符集. 不生效的3种情况:1.当此属性定义的是全局样式时,对于 ...

  3. APMServ 支持.htaccess伪静态

    假如你的APMServ安装在X盘APMServ5.2.6目录的话请按以下步骤做. X:\APMServ5.2.6\Apache\conf\httpd.conf  文件找到你所在的虚拟目录修改以下这个地 ...

  4. tkinter 类继承的三种方式

    tkinter class继承有三种方式. 提醒注意这几种继承的运行方式 一.继承 object 1.铺tk.Frame给parent: 说明: self.rootframe = tk.Frame(p ...

  5. Data URI 应用场景小结

    Data URI scheme 在前端开发中是个常用的技术,通常会在 CSS 设置背景图中用到.比如在 Google 的首页就有用到: Data URI scheme 简称 Data URI,经常会被 ...

  6. Laravel 下结合阿里云邮件推送服务

    最近在学习laravel做项目开发,遇到注册用户推送邮件的问题,之前用java做的时候是自己代码写的,也就是用ECS推送邮件,但是现在转php的laravel了就打算用php的邮件发送功能来推送邮件, ...

  7. Python __init__.py 作用详解

    __init__.py 文件的作用是将文件夹变为一个Python模块,Python 中的每个模块的包中,都有__init__.py 文件. 通常__init__.py 文件为空,但是我们还可以为它增加 ...

  8. SQLite剖析之C/C++接口

    前言 SQLite3是SQLite一个全新的版本,它虽然是在SQLite2的代码基础之上开发的,但是使用了和之前的版本不兼容的数据库格式和API.SQLite3是为了满足以下的需求而开发的:支持UTF ...

  9. hihocoder [Offer收割]编程练习赛4

    描述 最近天气炎热,小Ho天天宅在家里叫外卖.他常吃的一家餐馆一共有N道菜品,价格分别是A1, A2, ... AN元.并且如果消费总计满X元,还能享受优惠.小Ho是一个不薅羊毛不舒服斯基的人,他希望 ...

  10. 【Alpha版本】冲刺阶段——Day 9

    我说的都队 031402304 陈燊 031402342 许玲玲 031402337 胡心颖 03140241 王婷婷 031402203 陈齐民 031402209 黄伟炜 031402233 郑扬 ...