【BZOJ-3809】Gty的二逼妹子序列 分块 + 莫队算法
3809: Gty的二逼妹子序列
Time Limit: 80 Sec Memory Limit: 28 MB
Submit: 1072 Solved: 292
[Submit][Status][Discuss]
Description
Input
Output
对每个询问,单独输出一行,表示sl...sr中权值∈[a,b]的权值的种类数。
Sample Input
4 4 5 1 4 1 5 1 2 1
5 9 1 2
3 4 7 9
4 4 2 5
2 3 4 7
5 10 4 4
3 9 1 1
1 4 5 9
8 9 3 3
2 2 1 6
8 9 1 4
Sample Output
0
0
2
1
1
1
0
1
2
HINT
Source
Solution
分块+莫队
很好想,一开始看错题,没写莫队,直接分块+lower_bound然后发现过不了样例...
其实挺好想,对权值分块,带上莫队搞搞就好...
启发:
序列操作统计颜色,可以优先往分块+莫队上搞
莫队的时候,询问的排序很关键..(手误打反了第1,2关键字,居然能过3组..)
Code
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<cstdio>
using namespace std;
int read()
{
int x=,f=; char ch=getchar();
while (ch<'' || ch>'') {if (ch=='-') f=-; ch=getchar();}
while (ch>='' && ch<='') {x=x*+ch-''; ch=getchar();}
return x*f;
}
#define maxn 100010
#define maxm 1000100
int n,m,a[maxn],pos[maxn],num[maxn],an[maxn],bll,bln;
struct Asknode
{
int l,r,a,b,id;
bool operator < (const Asknode & A) const
{
if (pos[l]==pos[A.l]) return r<A.r;
return l<A.l;
}
}q[maxm];
int ans[maxm],qn;
int Query(int l,int r)
{
int ans=;
if (pos[l]==pos[r])
for (int i=l; i<=r; i++) if (num[i]) ans++; else continue;
else
{
for (int i=l; i<=pos[l]*bll; i++) if (num[i]) ans++;
for (int i=(pos[r]-)*bll+; i<=r; i++) if (num[i]) ans++;
}
for (int i=pos[l]+; i<=pos[r]-; i++) ans+=an[i];
return ans;
}
void move1(int x)
{
num[a[x]]--; if (num[a[x]]==) an[pos[a[x]]]--;
}
void move2(int x)
{
num[a[x]]++; if (num[a[x]]==) an[pos[a[x]]]++;
}
int nl=,nr=;
void work(int x)
{
int L=q[x].l,R=q[x].r,id=q[x].id;
while (nl<L) move1(nl),nl++;
while (nr>R) move1(nr),nr--;
while (nl>L) nl--,move2(nl);
while (nr<R) nr++,move2(nr);
ans[id]=Query(q[x].a,q[x].b);
// printf("%d %d %d %d %d\n",x,L,R,id,ans[id]);
}
int main()
{
n=read(),m=read(); bll=sqrt(n/); if (n%bll) bln=n/bll+; else bln=n/bll;
// printf("%d %d\n",bll,bln);
for (int i=; i<=n; i++) a[i]=read(),pos[i]=(i-)/bll+;
// for (int i=1; i<=n; i++) printf("%d\n",pos[i]);
for (int i=; i<=m; i++)
q[i].l=read(),q[i].r=read(),q[i].a=read(),q[i].b=read(),q[i].id=i;
sort(q+,q+m+);
for (int i=; i<=m; i++) work(i);
for (int i=; i<=m; i++) printf("%d\n",ans[i]);
return ;
}
%%%Gty大哥,%%%块爷,%%%Basker学长
前排围观自己的傻逼错误:

【BZOJ-3809】Gty的二逼妹子序列 分块 + 莫队算法的更多相关文章
- bzoj 3809 Gty的二逼妹子序列(莫队算法,块状链表)
[题意] 回答若干个询问,(l,r,a,b):区间[l,r]内权值在[a,b]的数有多少[种]. [思路] 考虑使用块状链表实现莫队算法中的插入与删除. 因为权值处于1..n之间,所以我们可以建一个基 ...
- BZOJ.3809.Gty的二逼妹子序列(分块 莫队)
题目链接 /* 25832 kb 26964 ms 莫队+树状数组:增加/删除/查询 都是O(logn)的,总时间复杂度O(m*sqrt(n)*logn),卡不过 莫队+分块:这样查询虽然变成了sqr ...
- BZOJ 3809 Gty的二逼妹子序列(莫队+分块)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3809 [题目大意] 给定一个长度为n(1<=n<=100000)的正整数序 ...
- 【BZOJ 3809】 3809: Gty的二逼妹子序列 (莫队+分块)
3809: Gty的二逼妹子序列 Time Limit: 80 Sec Memory Limit: 28 MBSubmit: 1728 Solved: 513 Description Autumn ...
- BZOJ 3809: Gty的二逼妹子序列
3809: Gty的二逼妹子序列 Time Limit: 80 Sec Memory Limit: 28 MBSubmit: 1387 Solved: 400[Submit][Status][Di ...
- Bzoj 3809: Gty的二逼妹子序列 莫队,分块
3809: Gty的二逼妹子序列 Time Limit: 35 Sec Memory Limit: 28 MBSubmit: 868 Solved: 234[Submit][Status][Dis ...
- [bzoj3809]Gty的二逼妹子序列_莫队_分块
Gty的二逼妹子序列 bzoj-3809 题目大意:给定一个n个正整数的序列,m次询问.每次询问一个区间$l_i$到$r_i$中,权值在$a_i$到$b_i$之间的数有多少个. 注释:$1\le n\ ...
- BZOJ 3809 Gty的二逼妹子序列 莫队算法+分块
Description Autumn和Bakser又在研究Gty的妹子序列了!但他们遇到了一个难题. 对于一段妹子们,他们想让你帮忙求出这之内美丽度∈[a,b]的妹子的美丽度的种类数. 为了方便,我们 ...
- [ AHOI 2013 ] 作业 & [ BZOJ 3809 ] Gty的二逼妹子序列
\(\\\) Description 给出一个长为 \(n\) 的数列 \(A\) 和 \(k\),多次询问: 对于一个区间 \([L_i,R_i]\),问区间内有多少个数在 \([a_i,b_i]\ ...
随机推荐
- javascript中的链表结构—从链表中删除元素
1.概念 上一个博文我们讲到链表,其中有一个方法remove()是暂时注释的,这个方法有点复杂,需要添加一个Previous()方法找到要删除的元素的前一个节点,这一个博文我们来分析一下这个remov ...
- Html5的一些引擎使用感触
记得在2011年的时候,51CTO曾经采访我对H5的看法,因为当时Html5小组和雷友的关系,感觉是一片大火的形式,当时我的看法是:第一盈利模式不清晰,第二硬件跟不上,第三技术不成熟. 第一和第二点很 ...
- Visual Studio 2012 cannot identify IHttpActionResult
使用ASP.NET Web API构造基于restful风格web services,IHttpActionResult是一个很好的http结果返回接口. 然而发现在vs2012开发环境中,Syste ...
- zabbix_proxy安装[yum mysql5.6]
安装mysql rpm -ivh http://dev.mysql.com/get/mysql-community-release-el6-5.noarch.rpm 修改mysql配置: [m ...
- .NET:Entity Framework 笔记
有二年没关注EF,今天无意试了下发现跟主流的Hibernate等ORM框架越来越接近了,先看下Entity类的定义: using System; using System.Collections.Ge ...
- matlab取整 四舍五入
Matlab取整函数有: fix, floor, ceil, round.取整函数在编程时有很大用处.一.取整函数1.向零取整(截尾取整)fix-向零取整(Round towards zero):&g ...
- ubuntu14.04禁用guest用户登录
打开终端(ctrl+alt+t) sudo echo -e "[SeatDefaults]\nallow-guest=false" > /usr/share/lightd ...
- Java:注解(元数据)
初识Java注解 所谓的元数据是指用来描述数据的数据,可能刚听到元数据的时候你会有点陌生,其实任何一个使用过struts或者hibernate的开发人员都在不知不觉中使用元数据,更通俗一点来说元数据是 ...
- 深入理解计算机系统(2.8)---浮点数的舍入,Java中的舍入例子以及浮点数运算(重要)
前言 上一章我们简单介绍了IEEE浮点标准,本次我们主要讲解一下浮点运算舍入的问题,以及简单的介绍浮点数的运算. 之前我们已经提到过,有很多小数是二进制浮点数无法准确表示的,因此就难免会遇到舍入的问题 ...
- [转]论acm与泡妞
abstract :本文从各个方面讨论了泡妞与做题之间的相似之处与不同点,尽量的站在一个公平的角度阐述这一问题,所得的研究成果填补了国内外的理论空白. - 泡了一个好妞就好像做了一道难题一样快感都是相 ...