3809: Gty的二逼妹子序列

Time Limit: 80 Sec  Memory Limit: 28 MB
Submit: 1072  Solved: 292
[Submit][Status][Discuss]

Description

Autumn和Bakser又在研究Gty的妹子序列了!但他们遇到了一个难题。
对于一段妹子们,他们想让你帮忙求出这之内美丽度∈[a,b]的妹子的美丽度的种类数。
为了方便,我们规定妹子们的美丽度全都在[1,n]中。
给定一个长度为n(1<=n<=100000)的正整数序列s(1<=si<=n),对于m(1<=m<=1000000)次询问“l,r,a,b”,每次输出sl...sr中,权值∈[a,b]的权值的种类数。

Input

第一行包括两个整数n,m(1<=n<=100000,1<=m<=1000000),表示数列s中的元素数和询问数。
第二行包括n个整数s1...sn(1<=si<=n)。
接下来m行,每行包括4个整数l,r,a,b(1<=l<=r<=n,1<=a<=b<=n),意义见题目描述。
保证涉及的所有数在C++的int内。
保证输入合法。

Output

对每个询问,单独输出一行,表示sl...sr中权值∈[a,b]的权值的种类数。

Sample Input

10 10
4 4 5 1 4 1 5 1 2 1
5 9 1 2
3 4 7 9
4 4 2 5
2 3 4 7
5 10 4 4
3 9 1 1
1 4 5 9
8 9 3 3
2 2 1 6
8 9 1 4

Sample Output

2
0
0
2
1
1
1
0
1
2

HINT

样例的部分解释:
5 9 1 2
子序列为4 1 5 1 2
在[1,2]里的权值有1,1,2,有2种,因此答案为2。
3 4 7 9
子序列为5 1
在[7,9]里的权值有5,有1种,因此答案为1。
4 4 2 5
子序列为1
没有权值在[2,5]中的,因此答案为0。
2 3 4 7
子序列为4 5
权值在[4,7]中的有4,5,因此答案为2。
建议使用输入/输出优化。

Source

Solution

分块+莫队

很好想,一开始看错题,没写莫队,直接分块+lower_bound然后发现过不了样例...

其实挺好想,对权值分块,带上莫队搞搞就好...

启发:

序列操作统计颜色,可以优先往分块+莫队上搞

莫队的时候,询问的排序很关键..(手误打反了第1,2关键字,居然能过3组..)

Code

#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<cstdio>
using namespace std;
int read()
{
int x=,f=; char ch=getchar();
while (ch<'' || ch>'') {if (ch=='-') f=-; ch=getchar();}
while (ch>='' && ch<='') {x=x*+ch-''; ch=getchar();}
return x*f;
}
#define maxn 100010
#define maxm 1000100
int n,m,a[maxn],pos[maxn],num[maxn],an[maxn],bll,bln;
struct Asknode
{
int l,r,a,b,id;
bool operator < (const Asknode & A) const
{
if (pos[l]==pos[A.l]) return r<A.r;
return l<A.l;
}
}q[maxm];
int ans[maxm],qn;
int Query(int l,int r)
{
int ans=;
if (pos[l]==pos[r])
for (int i=l; i<=r; i++) if (num[i]) ans++; else continue;
else
{
for (int i=l; i<=pos[l]*bll; i++) if (num[i]) ans++;
for (int i=(pos[r]-)*bll+; i<=r; i++) if (num[i]) ans++;
}
for (int i=pos[l]+; i<=pos[r]-; i++) ans+=an[i];
return ans;
}
void move1(int x)
{
num[a[x]]--; if (num[a[x]]==) an[pos[a[x]]]--;
}
void move2(int x)
{
num[a[x]]++; if (num[a[x]]==) an[pos[a[x]]]++;
}
int nl=,nr=;
void work(int x)
{
int L=q[x].l,R=q[x].r,id=q[x].id;
while (nl<L) move1(nl),nl++;
while (nr>R) move1(nr),nr--;
while (nl>L) nl--,move2(nl);
while (nr<R) nr++,move2(nr);
ans[id]=Query(q[x].a,q[x].b);
// printf("%d %d %d %d %d\n",x,L,R,id,ans[id]);
}
int main()
{
n=read(),m=read(); bll=sqrt(n/); if (n%bll) bln=n/bll+; else bln=n/bll;
// printf("%d %d\n",bll,bln);
for (int i=; i<=n; i++) a[i]=read(),pos[i]=(i-)/bll+;
// for (int i=1; i<=n; i++) printf("%d\n",pos[i]);
for (int i=; i<=m; i++)
q[i].l=read(),q[i].r=read(),q[i].a=read(),q[i].b=read(),q[i].id=i;
sort(q+,q+m+);
for (int i=; i<=m; i++) work(i);
for (int i=; i<=m; i++) printf("%d\n",ans[i]);
return ;
}

%%%Gty大哥,%%%块爷,%%%Basker学长

前排围观自己的傻逼错误:

【BZOJ-3809】Gty的二逼妹子序列 分块 + 莫队算法的更多相关文章

  1. bzoj 3809 Gty的二逼妹子序列(莫队算法,块状链表)

    [题意] 回答若干个询问,(l,r,a,b):区间[l,r]内权值在[a,b]的数有多少[种]. [思路] 考虑使用块状链表实现莫队算法中的插入与删除. 因为权值处于1..n之间,所以我们可以建一个基 ...

  2. BZOJ.3809.Gty的二逼妹子序列(分块 莫队)

    题目链接 /* 25832 kb 26964 ms 莫队+树状数组:增加/删除/查询 都是O(logn)的,总时间复杂度O(m*sqrt(n)*logn),卡不过 莫队+分块:这样查询虽然变成了sqr ...

  3. BZOJ 3809 Gty的二逼妹子序列(莫队+分块)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3809 [题目大意] 给定一个长度为n(1<=n<=100000)的正整数序 ...

  4. 【BZOJ 3809】 3809: Gty的二逼妹子序列 (莫队+分块)

    3809: Gty的二逼妹子序列 Time Limit: 80 Sec  Memory Limit: 28 MBSubmit: 1728  Solved: 513 Description Autumn ...

  5. BZOJ 3809: Gty的二逼妹子序列

    3809: Gty的二逼妹子序列 Time Limit: 80 Sec  Memory Limit: 28 MBSubmit: 1387  Solved: 400[Submit][Status][Di ...

  6. Bzoj 3809: Gty的二逼妹子序列 莫队,分块

    3809: Gty的二逼妹子序列 Time Limit: 35 Sec  Memory Limit: 28 MBSubmit: 868  Solved: 234[Submit][Status][Dis ...

  7. [bzoj3809]Gty的二逼妹子序列_莫队_分块

    Gty的二逼妹子序列 bzoj-3809 题目大意:给定一个n个正整数的序列,m次询问.每次询问一个区间$l_i$到$r_i$中,权值在$a_i$到$b_i$之间的数有多少个. 注释:$1\le n\ ...

  8. BZOJ 3809 Gty的二逼妹子序列 莫队算法+分块

    Description Autumn和Bakser又在研究Gty的妹子序列了!但他们遇到了一个难题. 对于一段妹子们,他们想让你帮忙求出这之内美丽度∈[a,b]的妹子的美丽度的种类数. 为了方便,我们 ...

  9. [ AHOI 2013 ] 作业 & [ BZOJ 3809 ] Gty的二逼妹子序列

    \(\\\) Description 给出一个长为 \(n\) 的数列 \(A\) 和 \(k\),多次询问: 对于一个区间 \([L_i,R_i]\),问区间内有多少个数在 \([a_i,b_i]\ ...

随机推荐

  1. 资料,来自HTML5前端开发学习⑤群

    resource HTML5+CSS3视频教程:http://pan.baidu.com/s/1hsyOjze 密码:c3uw JavaScript视频教程:链接:http://pan.baidu.c ...

  2. Ubuntu终端命令行不显示颜色

    在网上找到的一个有效方案是在.bash_profile 中增加颜色定义 export LS_COLORS='di=01;35:ln=01;36:pi=40;33:so=01;35:do=01;35:b ...

  3. Scrapy 爬虫

    Scrapy 爬虫 使用指南 完全教程   scrapy note command 全局命令: startproject :在 project_name 文件夹下创建一个名为 project_name ...

  4. 基于LeNet网络的中文验证码识别

    基于LeNet网络的中文验证码识别 由于公司需要进行了中文验证码的图片识别开发,最近一段时间刚忙完上线,好不容易闲下来就继上篇<基于Windows10 x64+visual Studio2013 ...

  5. Lowest Common Ancestor of a Binary Search Tree

    Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the BS ...

  6. scala 学习笔记(02) 元组Tuple、数组Array、Map、文件读写、网页抓取示例

    package yjmyzz import java.io.PrintWriter import java.util.Date import scala.io.Source object ScalaA ...

  7. Ubuntu环境下安装TinyOS系统

    1.输入下面命令会弹出source list窗口   1 sudo gedit /etc.apt/sources.list 在尾部添加以下地址:   1 2 deb http://tinyos.sta ...

  8. SQL 性能调优日常积累

    我们要做到不但会写SQL,还要做到写出性能优良的SQL,以下为笔者学习.摘录.并汇总部分资料与大家分享! (1)选择最有效率的表名顺序(只在基于规则的优化器中有效) ORACLE 的解析器按照从右到左 ...

  9. checkbox js onclick ajax,列表页表格中修改数据

    <input type='checkBox' value='".$row["p_id"]."' onclick='changeisNew(this);'& ...

  10. SQL Server 2012新特性(1)T-SQL操作FileTable目录实例

    在SQL Server 2008提供FileStream,以借助Windows系统本身的API来强化SQL Server对于非结构化数据的支持后,SQL Server 2012更是推出了像Contai ...