Pearson(皮尔逊)相关系数及MATLAB实现
转自:http://blog.csdn.net/wsywl/article/details/5727327
由于使用的统计相关系数比较频繁,所以这里就利用几篇文章简单介绍一下这些系数。
相关系数:考察两个事物(在数据里我们称之为变量)之间的相关程度。
如果有两个变量:X、Y,最终计算出的相关系数的含义可以有如下理解:
(1)、当相关系数为0时,X和Y两变量无关系。
(2)、当X的值增大(减小),Y值增大(减小),两个变量为正相关,相关系数在0.00与1.00之间。
(3)、当X的值增大(减小),Y值减小(增大),两个变量为负相关,相关系数在-1.00与0.00之间。
相关系数的绝对值越大,相关性越强,相关系数越接近于1或-1,相关度越强,相关系数越接近于0,相关度越弱。
通常情况下通过以下取值范围判断变量的相关强度:
相关系数 0.8-1.0 极强相关
0.6-0.8 强相关
0.4-0.6 中等程度相关
0.2-0.4 弱相关
0.0-0.2 极弱相关或无相关
Pearson(皮尔逊)相关系数
1、简介
皮尔逊相关也称为积差相关(或积矩相关)是英国统计学家皮尔逊于20世纪提出的一种计算直线相关的方法。
假设有两个变量X、Y,那么两变量间的皮尔逊相关系数可通过以下公式计算:
公式一:

公式二:

公式三:

公式四:

以上列出的四个公式等价,其中E是数学期望,cov表示协方差,N表示变量取值的个数。
2、适用范围
当两个变量的标准差都不为零时,相关系数才有定义,皮尔逊相关系数适用于:
(1)、两个变量之间是线性关系,都是连续数据。
(2)、两个变量的总体是正态分布,或接近正态的单峰分布。
(3)、两个变量的观测值是成对的,每对观测值之间相互独立。
3、Matlab实现
皮尔逊相关系数的Matlab实现(依据公式四实现):
- function coeff = myPearson(X , Y)
- % 本函数实现了皮尔逊相关系数的计算操作
- %
- % 输入:
- % X:输入的数值序列
- % Y:输入的数值序列
- %
- % 输出:
- % coeff:两个输入数值序列X,Y的相关系数
- %
- if length(X) ~= length(Y)
- error('两个数值数列的维数不相等');
- return;
- end
- fenzi = sum(X .* Y) - (sum(X) * sum(Y)) / length(X);
- fenmu = sqrt((sum(X .^2) - sum(X)^2 / length(X)) * (sum(Y .^2) - sum(Y)^2 / length(X)));
- coeff = fenzi / fenmu;
- end %函数myPearson结束
也可以使用Matlab中已有的函数计算皮尔逊相关系数:
- coeff = corr(X , Y);
4、参考内容
Pearson(皮尔逊)相关系数及MATLAB实现的更多相关文章
- Pearson(皮尔逊)相关系数
Pearson(皮尔逊)相关系数:也叫pearson积差相关系数.衡量两个连续变量之间的线性相关程度. 当两个变量都是正态连续变量,而且两者之间呈线性关系时,表现这两个变量之间相关程度用积差相关系数, ...
- np.corrcoef()方法计算数据皮尔逊积矩相关系数(Pearson's r)
上一篇通过公式自己写了一个计算两组数据的皮尔逊积矩相关系数(Pearson's r)的方法,但np已经提供了一个用于计算皮尔逊积矩相关系数(Pearson's r)的方法 np.corrcoef() ...
- pandas通过皮尔逊积矩线性相关系数(Pearson's r)计算数据相关性
皮尔逊积矩线性相关系数(Pearson's r)用于计算两组数组之间是否有线性关联,举个例子: a = pd.Series([1,2,3,4,5,6,7,8,9,10]) b = pd.Series( ...
- 皮尔逊(Pearson)系数矩阵——numpy
一.原理 注意 专有名词.(例如:极高相关) 二.代码 import numpy as np f = open('../file/Pearson.csv', encoding='utf-8') dat ...
- 皮尔逊相似度计算的例子(R语言)
编译最近的协同过滤算法皮尔逊相似度计算.下顺便研究R简单使用的语言.概率统计知识. 一.概率论和统计学概念复习 1)期望值(Expected Value) 由于这里每一个数都是等概率的.所以就当做是数 ...
- 皮尔逊残差 | Pearson residual
参考:Pearson Residuals 这些概念到底是写什么?怎么产生的? 统计学功力太弱了!
- Spark Mllib里的如何对两组数据用皮尔逊计算相关系数
不多说,直接上干货! import org.apache.spark.mllib.stat.Statistics 具体,见 Spark Mllib机器学习实战的第4章 Mllib基本数据类型和Mlli ...
- 从欧几里得距离、向量、皮尔逊系数到http://guessthecorrelation.com/
一.欧几里得距离就是向量的距离公式 二.皮尔逊相关系数反应的就是线性相关 游戏http://guessthecorrelation.com/ 的秘诀也就是判断一组点的拟合线的斜率y/x ------- ...
- Python基于皮尔逊系数实现股票预测
# -*- coding: utf-8 -*- """ Created on Mon Dec 2 14:49:59 2018 @author: zhen "&q ...
随机推荐
- Hello, AnnsShadow!
Hello! 发现这个神奇的园子快一年了,自己的学习历程磕磕碰碰也过了一年了,想想,这么久了,是时候做些记录做个分享者了. 从一开始的只敢看Blog,到现在自己发表一下自己的所感所想,算是一种成长了吧 ...
- [转载] python的sorted函数对字典按key排序和按value排序
1.sorted函数按key值对字典排序 先来基本介绍一下sorted函数,sorted(iterable,key,reverse),sorted一共有iterable,key,reverse这三个参 ...
- hadoop日常运维与升级总结
日常运维 升级 问题处理方法 日常运维 进程管理 由于配置文件的更改,需要重启生效, 或者是进程自己因某种致命原因终止, 或者发现进程工作出现异常等情况下,需要进行手动进程的关闭或启动, 或者是增删节 ...
- [转]net中哈希表的使用 Hashtable
本文转自:http://www.cnblogs.com/gsk99/archive/2011/08/28/2155988.html 以下是PetShop中DBHelper中的使用过程: //创建哈希表 ...
- Java与模式读书笔记
>设计目标:可扩展性,灵活性,可插入性. >设计原则 ● Open Closed Principle 开闭原则 对扩展开放,对修改关闭. 对面向对象的语言来说,不可以更改的是系统的抽象层, ...
- 123——Appium Girls活动
有感于Ruby Girls和Python Girls,在15年就想组织一次移动测试的妹子活动,框架选择Appium, 从15年夏天开始准备,申请Google的会议室,招募教练,开放报名,审核报名,到正 ...
- UESTC 764 失落的圣诞节 --RMQ/线段树
题意:n种物品,每种物品对不同的人都有不同的价值,有三个人选,第一个为普通学生,第二个是集,第三个是祈,集和祈可以选一样的,并且还会获得加分,集和祈选的普通学生都不能选,问三个人怎样选才能使总分最高. ...
- Windows 2008 R2 64位上安装wamp失败的原因
Exception Exception in module wampmanager.exe at 000F15A0... 因测试PHP程序需要,需要在windows系统上布署WAMP环境测试程序,对性 ...
- 使用mxmlc在命令行编译.as代码
在cmd命令行环境下,敲mxmlc出现 提示Error: could not find JRE和"Error: could not find Java 2 Runtime Envi 解决办法 ...
- Stunnel使用2
1.首先测试一下stunnel.exe,是否能正常运行,正常的话,不会报错,在桌面右下角位置显示. 2.第一步完成后,打开stunnel.conf,对stunnel进行配置,需要修改一下几项:(mys ...