[UOJ#34]多项式乘法
[UOJ#34]多项式乘法
试题描述
这是一道模板题。
给你两个多项式,请输出乘起来后的多项式。
输入
第一行两个整数 n 和 m,分别表示两个多项式的次数。
第二行 n+1 个整数,分别表示第一个多项式的 0 到 n 次项前的系数。
第三行 m+1 个整数,分别表示第一个多项式的 0 到 m 次项前的系数。
输出
输入示例
输出示例
数据规模及约定
0≤n,m≤105,保证输入中的系数大于等于 0 且小于等于 9。
题解
贴模板。
顺便 FFT 学习链接:Picks的博客
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <stack>
#include <vector>
#include <queue>
#include <cstring>
#include <string>
#include <map>
#include <set>
using namespace std; int read() {
int x = 0, f = 1; char c = getchar();
while(!isdigit(c)){ if(c == '-') f = -1; c = getchar(); }
while(isdigit(c)){ x = x * 10 + c - '0'; c = getchar(); }
return x * f;
} #define maxn 400010
const double pi = acos(-1.0);
int n, m;
struct Complex {
double a, b;
Complex operator + (const Complex& t) {
Complex ans;
ans.a = a + t.a;
ans.b = b + t.b;
return ans;
}
Complex operator - (const Complex& t) {
Complex ans;
ans.a = a - t.a;
ans.b = b - t.b;
return ans;
}
Complex operator * (const Complex& t) {
Complex ans;
ans.a = a * t.a - b * t.b;
ans.b = a * t.b + b * t.a;
return ans;
}
Complex operator *= (const Complex& t) {
*this = *this * t;
return *this;
}
} a[maxn], b[maxn]; int Ord[maxn];
void FFT(Complex* x, int n, int tp) {
for(int i = 0; i < n; i++) if(i < Ord[i]) swap(x[i], x[Ord[i]]);
for(int i = 1; i < n; i <<= 1) {
Complex wn, w; wn.a = cos(pi / i); wn.b = (double)tp * sin(pi / i);
for(int j = 0; j < n; j += (i << 1)) {
w.a = 1.0; w.b = 0.0;
for(int k = 0; k < i; k++) {
Complex t1 = x[j+k], t2 = w * x[j+k+i];
x[j+k] = t1 + t2;
x[j+k+i] = t1 - t2;
w *= wn;
}
}
}
return ;
} int main() {
n = read(); m = read();
for(int i = 0; i <= n; i++) a[i].a = (double)read(), a[i].b = 0.0;
for(int i = 0; i <= m; i++) b[i].a = (double)read(), b[i].b = 0.0; int L = 0;
m += n; for(n = 1; n <= m; n <<= 1) L++;
for(int i = 0; i < n; i++) Ord[i] = (Ord[i>>1] >> 1) | ((i & 1) << L - 1);
FFT(a, n, 1); FFT(b, n, 1);
for(int i = 0; i <= n; i++) a[i] *= b[i];
FFT(a, n, -1); for(int i = 0; i < m; i++) printf("%d ", (int)(a[i].a / n + .5)); printf("%d\n", (int)(a[m].a / n + .5)); return 0;
}
[UOJ#34]多项式乘法的更多相关文章
- ●UOJ 34 多项式乘法
题链: http://uoj.ac/problem/34 题解: FFT入门题. (终于接触到迷一样的FFT了) 初学者在对复数和单位根有简单了解的基础上,可以直接看<再探快速傅里叶变换> ...
- UOJ#34. 多项式乘法(NTT)
这是一道模板题. 给你两个多项式,请输出乘起来后的多项式. 输入格式 第一行两个整数 nn 和 mm,分别表示两个多项式的次数. 第二行 n+1n+1 个整数,表示第一个多项式的 00 到 nn 次项 ...
- 【刷题】UOJ #34 多项式乘法
这是一道模板题. 给你两个多项式,请输出乘起来后的多项式. 输入格式 第一行两个整数 \(n\) 和 \(m\) ,分别表示两个多项式的次数. 第二行 \(n+1\) 个整数,表示第一个多项式的 \( ...
- UOJ 34 多项式乘法 FFT 模板
这是一道模板题. 给你两个多项式,请输出乘起来后的多项式. 输入格式 第一行两个整数 nn 和 mm,分别表示两个多项式的次数. 第二行 n+1n+1 个整数,表示第一个多项式的 00 到 nn 次项 ...
- 2018.11.14 uoj#34. 多项式乘法(ntt)
传送门 今天学习nttnttntt. 其实递归方法和fftfftfft是完全相同的. 只不过fftfftfft的单位根用的是复数中的东西,而nttnttntt用的是数论里面有相同性质的原根. 代码: ...
- 2018.11.14 uoj#34. 多项式乘法(fft)
传送门 NOIpNOIpNOIp爆炸不能阻止我搞oioioi的决心 信息技术课进行一点康复训练. fftfftfft板题. 代码: #include<bits/stdc++.h> usin ...
- UOJ 34 多项式乘法 ——NTT
[题目分析] 快速数论变换的模板题目. 与fft的方法类似,只是把复数域中的具有循环性质的单位复数根换成了模意义下的原根. 然后和fft一样写就好了,没有精度误差,但是跑起来比较慢. 这破题目改了好长 ...
- UOJ 34: 多项式乘法(FFT模板题)
关于FFT 这个博客的讲解超级棒 http://blog.miskcoo.com/2015/04/polynomial-multiplication-and-fast-fourier-transfor ...
- [UOJ 0034] 多项式乘法
#34. 多项式乘法 统计 描述 提交 自定义测试 这是一道模板题. 给你两个多项式,请输出乘起来后的多项式. 输入格式 第一行两个整数 nn 和 mm,分别表示两个多项式的次数. 第二行 n+1n+ ...
随机推荐
- Dropbox的可用Hosts文件
108.160.167.203 www.dropbox.com 108.160.167.203 dropbox.com 108.160.165.211 dl-client677.dropbox.com ...
- setter方法的内存错误
- (void)setList:(ClassicList *)list { self.list = list; _titleLabel.text = list.activityName; _addre ...
- Graphics samples
绘制二次曲线: public void paint(Graphics g) { // TODO 自动生成的方法存根 super.paint(g); Graphics2D g2=(Graphics2D) ...
- maven_项目的依赖、聚合、继承
一.假设目前有三个maven项目,分别是project.A.project.B.project.C 要求B依赖A.C依赖B但不依赖C 1.B添加对A的依赖 1 2 3 4 5 <depend ...
- 判断Set里的元素是否重复、==、equals、hashCode方法研究-代码演示
被测试类,没有重写hasCode()和equals()方法: package niukewang; import java.util.Objects; public class setClass { ...
- CSS中font-style的斜体属性Italic oblique的区别
要搞清楚这个问题,首先要明白字体是怎么回事.一种字体有粗体.斜体.下划线.删除线等诸多属性.但是并不是所有字体都做了这些,一些不常用的字体,或许就只有个正常体,如果你用Italic,就没有效果了~这时 ...
- 【poj3233】 Matrix Power Series
http://poj.org/problem?id=3233 (题目链接) 题意 给出一个n×n的矩阵A,求模m下A+A2+A3+…+Ak 的值 Solution 今日考试就A了这一道题.. 当k为偶 ...
- FatMouse的交易问题
想按照某个值排序,用sort()函数,结果想了半天不知道用数组怎么解决,然后看了答案,才知道原来可以用struct,想想我真是笨死了.. 原题描述以及答案如下: Problem Description ...
- C# ServiceStack.Redis 操作对象List
class Car { public Int32 Id { get; set; } public String Name { get; set; } static void Main(string[] ...
- Memcache和Redis