D. Sum of Medians
time limit per test

3 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

In one well-known algorithm of finding the k-th order statistics we should divide all elements into groups of five consecutive elements and find the median of each five. A median is called the middle element of a sorted array (it's the third largest element for a group of five). To increase the algorithm's performance speed on a modern video card, you should be able to find a sum of medians in each five of the array.

A sum of medians of a sorted k-element set S = {a1, a2, ..., ak}, where a1 < a2 < a3 < ... < ak, will be understood by as

The  operator stands for taking the remainder, that is  stands for the remainder of dividing x by y.

To organize exercise testing quickly calculating the sum of medians for a changing set was needed.

Input

The first line contains number n (1 ≤ n ≤ 105), the number of operations performed.

Then each of n lines contains the description of one of the three operations:

  • add x — add the element x to the set;
  • del x — delete the element x from the set;
  • sum — find the sum of medians of the set.

For any add x operation it is true that the element x is not included in the set directly before the operation.

For any del x operation it is true that the element x is included in the set directly before the operation.

All the numbers in the input are positive integers, not exceeding 109.

Output

For each operation sum print on the single line the sum of medians of the current set. If the set is empty, print 0.

Please, do not use the %lld specificator to read or write 64-bit integers in C++. It is preferred to use the cin, cout streams (also you may use the %I64d specificator).

Sample test(s)
input
6
add 4
add 5
add 1
add 2
add 3
sum
output
3
input
14
add 1
add 7
add 2
add 5
sum
add 6
add 8
add 9
add 3
add 4
add 10
sum
del 1
sum
output

5
11
13
-----------------------------------------------------------------------------------------------

Solution
用线段树维护集合
1.预处理所有add/del操作,将涉及的元素离散化为1...n
2.add x ,设x离散化为i,修改区间(i+1, n), 将各节点的sum[5]右移一位,再插入x
3.del x, 设x离散化为i, 修改区间(i+1, n), 将各节点的sum[5]左移一位, 在删除x
4.插入/删除元素需要知道元素在集合中的位置 (place),这由树状数组(BIT)维护。
5.对区间sum[5]的左移/右移操作需要用lazy-tag优化。
6.如果手写离散化,要注意实现细节。
7.需考虑极端输入,比如无sum询问的输入
---------------------------------------------------------------------------------------------
这是我第一发提交,TLE on test 5, 跪在极端输入上了,TLE的原因是调用了add(0, 1)
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int MAX_N=1e5+;
#define X first
#define Y second
//BIT
int bit[MAX_N], rb;
int sum(int i){
int s=;
while(i){
s+=bit[i];
i-=i&-i;
}
return s;
}
void add(int i, int x){
while(i<=rb){
bit[i]+=x;
i+=i&-i;
}
} typedef pair<int, int> P;
P q[MAX_N];
int val[MAX_N];
char type[MAX_N][];
int lisan(int N){
int v;
for(int i=; i<N; i++){
scanf("%s", type[i]);
switch(*type[i]){
case 'a':
case 'd':
scanf("%d", &v);
q[i]=P(v, i);
break;
case 's':
q[i]=P(, i);  //TLE在这里
break;
}
}
sort(q, q+N);
int ord=;
for(int i=; i<N; ord++){
val[ord]=q[i].X;
do{
q[i].X=ord;
i++;
}while(i<N&&q[i].X==val[ord]);
}
return ord;
}
bool cmp(const P &a, const P &b){
return a.Y<b.Y;
}
//ST
struct node{
int l, r, tag;
ll sum[];
int mid(){return (l+r)>>;}
}T[MAX_N<<];
void shift(int id, int cnt){
cnt%=;
if(!cnt) return;
ll tmp[];
memcpy(tmp, T[id].sum, sizeof(tmp));
for(int i=; i<; i++){
int nt=(i+cnt+)%;
T[id].sum[nt]=tmp[i];
}
}
void pushdown(int id){
node &now=T[id], &lch=T[id<<], &rch=T[id<<|];
lch.tag+=now.tag, rch.tag+=now.tag;
shift(id<<, now.tag);
shift(id<<|, now.tag);
now.tag=; //error prone
}
void unite(int id){
node &now=T[id], &lch=T[id<<], &rch=T[id<<|];
for(int i=; i<; i++)
now.sum[i]=lch.sum[i]+rch.sum[i];
}
void build(int id, int l, int r){
node &now=T[id];
T[id].l=l, T[id].r=r, T[id].tag=;
memset(T[id].sum, , sizeof(T[id].sum));
if(l==r) return;
int mid=(l+r)>>;
build(id<<, l, mid);
build(id<<|, mid+, r);
}
void insert(int id, int pos, int ord, int v){
node &now=T[id];
if(now.l==now.r){
now.sum[ord%]+=v;
}
else{
pushdown(id);
if(pos<=now.mid())
insert(id<<, pos, ord, v);
else
insert(id<<|, pos, ord, v);
unite(id);
}
}
void shift(int id, int lb, int cnt){
if(lb>rb) return;
node &now=T[id];
if(now.l>=lb){
shift(id, cnt);
now.tag+=cnt;
}
else{
pushdown(id);
if(lb<=now.mid())
shift(id<<, lb, cnt);
shift(id<<|, lb, cnt);
unite(id);
}
} int main(){
//freopen("in", "r", stdin);
int N;
scanf("%d", &N);
rb=lisan(N);
build(, , rb);
sort(q, q+N, cmp);
for(int i=; i<N; i++){
if(*type[i]=='a'){
int ord=sum(q[i].X)+;
add(q[i].X, );
shift(, q[i].X+, );
insert(, q[i].X, ord, val[q[i].X]);
}
else if(*type[i]=='d'){
int ord=sum(q[i].X);
add(q[i].X, -);
shift(, q[i].X+, -);
insert(, q[i].X, ord, -val[q[i].X]);
}
else{
printf("%I64d\n", T[].sum[]);
}
}
return ;
}

其实我已经考虑到这种无sum询问的输入,但没注意到它会导致我的代码TLE

AC version

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int MAX_N=1e5+;
#define X first
#define Y second
//BIT
int bit[MAX_N], rb;
int sum(int i){
int s=;
while(i){
s+=bit[i];
i-=i&-i;
}
return s;
}
void add(int i, int x){
while(i<=rb){
bit[i]+=x;
i+=i&-i;
}
} typedef pair<int, int> P;
P q[MAX_N];
int val[MAX_N];
char type[MAX_N][];
int lisan(int N){
int v;
for(int i=; i<N; i++){
scanf("%s", type[i]);
switch(*type[i]){
case 'a':
case 'd':
scanf("%d", &v);
q[i]=P(v, i);
break;
case 's':
q[i]=P(INT_MAX, i);  //注意这里的改动
break;
}
}
sort(q, q+N);
int ord=;
for(int i=; i<N;){
++ord;
val[ord]=q[i].X;
do{
q[i].X=ord;
i++;
}while(i<N&&q[i].X==val[ord]);
}
return ord;
}
bool cmp(const P &a, const P &b){
return a.Y<b.Y;
}
//ST
struct node{
int l, r, tag;
ll sum[];
int mid(){return (l+r)>>;}
}T[MAX_N<<];
void shift(int id, int cnt){
cnt%=;
if(!cnt) return;
ll tmp[];
memcpy(tmp, T[id].sum, sizeof(tmp));
for(int i=; i<; i++){
int nt=(i+cnt+)%;
T[id].sum[nt]=tmp[i];
}
}
void pushdown(int id){
node &now=T[id], &lch=T[id<<], &rch=T[id<<|];
lch.tag+=now.tag, rch.tag+=now.tag;
shift(id<<, now.tag);
shift(id<<|, now.tag);
now.tag=; //error prone
}
void unite(int id){
node &now=T[id], &lch=T[id<<], &rch=T[id<<|];
for(int i=; i<; i++)
now.sum[i]=lch.sum[i]+rch.sum[i];
}
void build(int id, int l, int r){
node &now=T[id];
T[id].l=l, T[id].r=r, T[id].tag=;
memset(T[id].sum, , sizeof(T[id].sum));
if(l==r) return;
int mid=(l+r)>>;
build(id<<, l, mid);
build(id<<|, mid+, r);
}
void insert(int id, int pos, int ord, int v){
node &now=T[id];
if(now.l==now.r){
now.sum[ord%]+=v;
}
else{
pushdown(id);
if(pos<=now.mid())
insert(id<<, pos, ord, v);
else
insert(id<<|, pos, ord, v);
unite(id);
}
}
void shift(int id, int lb, int cnt){
if(lb>rb) return;
node &now=T[id];
if(now.l>=lb){
shift(id, cnt);
now.tag+=cnt;
}
else{
pushdown(id);
if(lb<=now.mid())
shift(id<<, lb, cnt);
shift(id<<|, lb, cnt);
unite(id);
}
} int main(){
//freopen("in", "r", stdin);
int N;
scanf("%d", &N);
rb=lisan(N);
build(, , rb);
sort(q, q+N, cmp);
for(int i=; i<N; i++){
if(*type[i]=='a'){
int ord=sum(q[i].X)+;
add(q[i].X, );
shift(, q[i].X+, );
insert(, q[i].X, ord, val[q[i].X]);
}
else if(*type[i]=='d'){
int ord=sum(q[i].X);
add(q[i].X, -);
shift(, q[i].X+, -);
insert(, q[i].X, ord, -val[q[i].X]);
}
else{
printf("%I64d\n", T[].sum[]);
}
}
return ;
}

Codeforces 85D Sum of Medians的更多相关文章

  1. Codeforces 85D Sum of Medians(线段树)

    题目链接:Codeforces 85D - Sum of Medians 题目大意:N个操作,add x:向集合中加入x:del x:删除集合中的x:sum:将集合排序后,将集合中全部下标i % 5 ...

  2. 数据结构(线段树):CodeForces 85D Sum of Medians

    D. Sum of Medians time limit per test 3 seconds memory limit per test 256 megabytes input standard i ...

  3. CodeForces 85D Sum of Medians Splay | 线段树

    Sum of Medians 题解: 对于这个题目,先想到是建立5棵Splay,然后每次更新把后面一段区间的树切下来,然后再转圈圈把切下来的树和别的树合并. 但是感觉写起来太麻烦就放弃了. 建立5棵线 ...

  4. 85D Sum of Medians

    传送门 题目 In one well-known algorithm of finding the k-th order statistics we should divide all element ...

  5. CF 85D Sum of Medians (五颗线段树)

    http://codeforces.com/problemset/problem/85/D 题意: 给你N(0<N<1e5)次操作,每次操作有3种方式, 1.向集合里加一个数a(0< ...

  6. codeforces 85D D. Sum of Medians Vector的妙用

    D. Sum of Medians Time Limit: 1 Sec  Memory Limit: 256 MB 题目连接 http://codeforces.com/problemset/prob ...

  7. codeforces 85D D. Sum of Medians 线段树

    D. Sum of Medians time limit per test 3 seconds memory limit per test 256 megabytes input standard i ...

  8. Yandex.Algorithm 2011 Round 1 D. Sum of Medians 线段树

    题目链接: Sum of Medians Time Limit:3000MSMemory Limit:262144KB 问题描述 In one well-known algorithm of find ...

  9. Coderforces 85 D. Sum of Medians(线段树单点修改)

    D. Sum of Medians time limit per test 3 seconds memory limit per test 256 megabytes input standard i ...

随机推荐

  1. 没有什么好神秘的: wait_on_page_bit

    文件系统中经常会有wait_on_page_bit函数的封装,比如f2fs中就会有如下的代码: 1431 void f2fs_wait_on_page_writeback(struct page *p ...

  2. 浅析C#深拷贝与浅拷贝(转)

    1.深拷贝与浅拷贝   拷贝即是通常所说的复制(Copy)或克隆(Clone),对象的拷贝也就是从现有对象复制一个“一模一样”的新对象出来.虽然都是复制对象,但是不同的 复制方法,复制出来的新对象却并 ...

  3. Ubuntu优化-修改启动级别

    一 修改Ubuntu启动级别 sudo apt-get install sysv-rc-conf 执行: sysv-rc-conf 打x的表示开机启动. 二 启动级别 Ubuntu默认启动级别为2 r ...

  4. Java 8新特性——default方法(defender方法)介绍

    我们都知道在Java语言的接口中只能定义方法名,而不能包含方法的具体实现代码.接口中定义的方法必须在接口的非抽象子类中实现.下面就是关于接口的一个例子: 1 2 3 4 5 6 7 8 9 10 11 ...

  5. 完美隐藏win7文件和文件夹

    有没有一种方法即使使用隐藏模式也不能查看, 没错可以用上帝模式....... 啥是Win7上帝模式?不知道的看看..... <<<<<<<<<&l ...

  6. Java NIO框架Mina、Netty、Grizzly介绍与对比(zz)

    Mina:Mina(Multipurpose Infrastructure for Network Applications) 是 Apache 组织一个较新的项目,它为开发高性能和高可用性的网络应用 ...

  7. Java系列: 关于HttpSessionListener的sessionDestroyed什么时候触发

    根据书本写了下面这个监听器,然后开始调试,打开一个浏览器来访问该网页,可以正常触发sessionCreated,然后关闭浏览器,发现没有触发sessionDestroyed,然后我怀疑是不是这个监听器 ...

  8. Jquery操作select,radio,input,p之类

    select的操作 变化后触发操作 $("#txtaddprojecturl").change(function(){ $("#addprojectname") ...

  9. 20145208 《Java程序设计》第6周学习总结

    20145208 <Java程序设计>第6周学习总结 教材学习内容总结 输入与输出 InputStream与OutputStream 从应用程序角度来看,如果要将数据从来源取出,可以使用输 ...

  10. js实现黑客帝国二进制雨

    置顶文章:<纯CSS打造银色MacBook Air(完整版)> 上一篇:<对于RegExp反向引用的一点理解> 作者主页:myvin 博主QQ:851399101(点击QQ和博 ...