http://www.spoj.com/problems/DISUBSTR/

题意:求字符串不同子串的数目。

#include <bits/stdc++.h>
using namespace std; const int N=1005;
void sort(int *x, int *y, int *sa, int n, int m) {
static int c[N], i;
for(i=0; i<m; ++i) c[i]=0;
for(i=0; i<n; ++i) ++c[x[y[i]]];
for(i=1; i<m; ++i) c[i]+=c[i-1];
for(i=n-1; i>=0; --i) sa[--c[x[y[i]]]]=y[i];
}
void hz(int *a, int *sa, int n, int m) {
static int t1[N], t2[N], i, j, p, *x, *y, *t;
x=t1, y=t2;
for(i=0; i<n; ++i) x[i]=a[i], y[i]=i;
sort(x, y, sa, n, m);
for(j=1, p=1; p<n; j<<=1, m=p) {
p=0;
for(i=n-j; i<n; ++i) y[p++]=i;
for(i=0; i<n; ++i) if(sa[i]-j>=0) y[p++]=sa[i]-j;
sort(x, y, sa, n, m);
for(t=x, x=y, y=t, p=1, x[sa[0]]=0, i=1; i<n; ++i)
x[sa[i]]=y[sa[i]]==y[sa[i-1]]&&y[sa[i]+j]==y[sa[i-1]+j]?p-1:p++;
}
}
void geth(int *s, int *sa, int *h, int n) {
static int rank[N], j, i, k;
for(i=1; i<=n; ++i) rank[sa[i]]=i;
for(k=0, i=1; i<=n; h[rank[i++]]=k)
for(k?--k:0, j=sa[rank[i]-1]; s[i+k]==s[j+k]; ++k);
} int a[N], sa[N], h[N], n;
char s[N];
int main() {
int cs;
scanf("%d", &cs);
while(cs--) {
scanf("%s", s+1);
n=strlen(s+1);
for(int i=1; i<=n; ++i) a[i]=s[i];
hz(a, sa, n+1, 128);
geth(a, sa, h, n);
int ans=0;
for(int i=1; i<=n; ++i) ans+=n-sa[i]+1-h[i];
printf("%d\n", ans);
}
return 0;
}

  


经典题....首先每个后缀的前缀就是一个子串,因此每个后缀可以构成这个后缀长度大小那么多个子串。但是我们要考虑重合的情况,即我们剪掉与上一个后缀子串相同前缀的height值就好啦

【SPOJ】694. Distinct Substrings的更多相关文章

  1. 【SPOJ】Distinct Substrings(后缀自动机)

    [SPOJ]Distinct Substrings(后缀自动机) 题面 Vjudge 题意:求一个串的不同子串的数量 题解 对于这个串构建后缀自动机之后 我们知道每个串出现的次数就是\(right/e ...

  2. 【SPOJ】Distinct Substrings/New Distinct Substrings(后缀数组)

    [SPOJ]Distinct Substrings/New Distinct Substrings(后缀数组) 题面 Vjudge1 Vjudge2 题解 要求的是串的不同的子串个数 两道一模一样的题 ...

  3. 【SPOJ】Distinct Substrings

    [SPOJ]Distinct Substrings 求不同子串数量 统计每个点有效的字符串数量(第一次出现的) \(\sum\limits_{now=1}^{nod}now.longest-paren ...

  4. SPOJ 694. Distinct Substrings (后缀数组不相同的子串的个数)转

    694. Distinct Substrings Problem code: DISUBSTR   Given a string, we need to find the total number o ...

  5. 【SPOJ】Substrings(后缀自动机)

    [SPOJ]Substrings(后缀自动机) 题面 Vjudge 题意:给定一个长度为\(len\)的串,求出长度为1~len的子串中,出现最多的出现了多少次 题解 出现次数很好处理,就是\(rig ...

  6. 【SPOJ】NUMOFPAL - Number of Palindromes(Manacher,回文树)

    [SPOJ]NUMOFPAL - Number of Palindromes(Manacher,回文树) 题面 洛谷 求一个串中包含几个回文串 题解 Manacher傻逼题 只是用回文树写写而已.. ...

  7. 【SPOJ】Longest Common Substring II (后缀自动机)

    [SPOJ]Longest Common Substring II (后缀自动机) 题面 Vjudge 题意:求若干个串的最长公共子串 题解 对于某一个串构建\(SAM\) 每个串依次进行匹配 同时记 ...

  8. 【SPOJ】Longest Common Substring(后缀自动机)

    [SPOJ]Longest Common Substring(后缀自动机) 题面 Vjudge 题意:求两个串的最长公共子串 题解 \(SA\)的做法很简单 不再赘述 对于一个串构建\(SAM\) 另 ...

  9. 【SPOJ】Power Modulo Inverted(拓展BSGS)

    [SPOJ]Power Modulo Inverted(拓展BSGS) 题面 洛谷 求最小的\(y\) 满足 \[k\equiv x^y(mod\ z)\] 题解 拓展\(BSGS\)模板题 #inc ...

随机推荐

  1. 简单的2d图形变换--仿设变换AffineTransform

    在ios中常常遇到些小的动画效果,比如点击一个按钮后,按钮上的三角形图片就旋转了.这种简单的小动画,常常通过更改view的transform属性来实现.这个transform属性,就是一个仿射变化矩阵 ...

  2. Ubuntu下用命令行快速打开各类型文件

    在Ubuntu下,通常用命令行打开文本文件,比如用命令gedit.more.cat.vim.less.但当需要打开其他格式文件时,比如pdf. jpg.mp3格式文件,咱们通常做法是进入到文件所在的目 ...

  3. July 25th, Week 31st Monday, 2016

    We will not go quietly into the night. 今夜,我们将奋战到底. We will be the champion. We will not stop fightin ...

  4. WINDOWS xp用户账户怎么没了怎么办?

    这是因为系统的一个默认设置!新建用户会把管理员用户隐藏!只是修改了里面的注册表!在运行(windows徽标+R)里输入“regedit”可以打开注册表编辑器,定位到“HKEY_LOCAL_MACHIN ...

  5. [hihoCoder] 博弈游戏·Nim游戏

    时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 今天我们要认识一对新朋友,Alice与Bob.Alice与Bob总是在进行各种各样的比试,今天他们在玩一个取石子的游戏.在 ...

  6. Linux系统如何查看CPU型号等

    有时候在下载jdk或其它用图的时候,可能需要查看一下这个cpu的型号 [root@subvm ~]# less /proc/cpuinfo |grep modelmodel           : 4 ...

  7. tcp连接管理

    [root@ok etc]# cat /proc/sys/net/core/netdev_max_backlog 每个网络接口接收数据包的速率比内核处理这些包的速率快时,允许送到队列的数据包的最大数目 ...

  8. JUC回顾之-AQS同步器的实现原理

    1.什么是AQS? AQS的核心思想是基于volatile int state这样的volatile变量,配合Unsafe工具对其原子性的操作来实现对当前锁状态进行修改.同步器内部依赖一个FIFO的双 ...

  9. Vim插件安装

    一.常用的插件 sudo apt-get install vim vim-scripts vim-docsudo apt-get install ctagssudo apt-get install v ...

  10. Java Hour 56 Spring 和 Hibernate 的集成

    上一章节我们完成了一个简单的Spring 的试验品,这章要让Spring 上战场了,不要慌,步骤都是一样的. Spring 对 Hibernate 的支持是很多方面的,第一个战场是SessionFac ...