(题面来自ACwing)

汉诺塔问题,条件如下:

1、这里有A、B、C和D四座塔。

2、这里有n个圆盘,n的数量是恒定的。

3、每个圆盘的尺寸都不相同。

4、所有的圆盘在开始时都堆叠在塔A上,且圆盘尺寸从塔顶到塔底逐渐增大。

5、我们需要将所有的圆盘都从塔A转移到塔D上。

6、每次可以移动一个圆盘,当塔为空塔或者塔顶圆盘尺寸大于被移动圆盘时,可将圆盘移至这座塔上。

请你求出将所有圆盘从塔A移动到塔D,所需的最小移动次数是多少。

输入格式

没有输入

输出格式

对于每一个整数n(1≤n≤12),输出一个满足条件的最小移动次数,每个结果占一行。

  三个柱子的汉诺塔问题最小步数存在通项公式:2^n - 1,其中n为圆盘数。这个式子很容易由首项a_1 = 1和递推公式a_n = a_(n-1) * 2 + 1得到。递推式的含义是,先利用2个柱子把上面的n-1个圆盘移到B柱上,把第n个圆盘移到C上,再把B柱上的n-1个移到C上。

  四个柱子的汉诺塔问题并不是简单的逐项递推,需要在转移时做出决策。设g[n]为n盘3柱问题的最短步数,f[n]为n盘4柱问题的最短步数,状态转移方程:

  f[i] = min(f[i - j] * 2 + g[j])

  其中j属于[1, i)。这个式子的含义是,我们选择上面的i - j个圆盘,在4柱模式下把它们移到B柱上,然后用其余的3个柱子把剩下的i个圆盘移到D柱上,最后把B柱上的圆盘在4柱模式下移到D柱上。

代码:

  1. #include <cstdio>
  2. #include <cstring>
  3. #include <iostream>
  4. using namespace std;
  5. int g[20], f[20], ans;
  6. int main() {
  7. for (int i = 1; i <= 12; ++i)
  8. g[i] = (1 << i) - 1;
  9. puts("1");  //特判1个圆盘
  10. memset(f, 0x3f, sizeof(f));
  11. f[1] = 1;
  12. for (int i = 2; i <= 12; ++i) {
  13. for (int j = 1; j < i; ++j)
  14. f[i] = min(f[i], 2 * f[j] + g[i - j]);
  15. printf("%d\n", f[i]);
  16. }
  17. return 0;
  18. }

【ACwing 96】奇怪的汉诺塔——区间dp的更多相关文章

  1. BZOJ_1019_[SHOI2008]_汉诺塔_(DP)

    描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1019 汉诺塔游戏,但是有移动优先级,在不违反原有规则的情况下,给定优先移动目标.求完成游戏所需 ...

  2. 【BZOJ 1019】 1019: [SHOI2008]汉诺塔 (DP?)

    1019: [SHOI2008]汉诺塔 Description 汉诺塔由三根柱子(分别用A B C表示)和n个大小互不相同的空心盘子组成.一开始n个盘子都摞在柱子A上,大的在下面,小的在上面,形成了一 ...

  3. hdu 1207 汉诺塔II (DP+递推)

    汉诺塔II Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submi ...

  4. 2020牛客寒假算法基础集训营6 C 汉诺塔 (dp 最长下降子序列)

    https://ac.nowcoder.com/acm/contest/3007/C 将木板按照Xi从小到大排序,将这时的Yi数列记为Zi数列,则问题变成将Zi划分为尽可能少的若干组上升子序列. 根据 ...

  5. [递推]B. 【例题2】奇怪汉诺塔

    B . [ 例 题 2 ] 奇 怪 汉 诺 塔 B. [例题2]奇怪汉诺塔 B.[例题2]奇怪汉诺塔 题目描述 汉诺塔问题,条件如下: 这里有 A A A. B B B. C C C 和 D D D ...

  6. T2485 汉诺塔升级版(普及)(递归)

    https://www.luogu.org/problem/show?pid=T2485 题目背景 汉诺塔升级了 题目描述 现在我们有N个圆盘和N个柱子,每个圆盘大小都不一样,大的圆盘不能放在小的圆盘 ...

  7. HDOJ-2175 汉诺塔IX

    题目大意:基于汉诺塔原型,第一根柱子上有n个盘子,从上至下编号从1依次递增至n.在最佳移动方案中,第m次所移动的盘子的编号. 解题思路:模拟必然是会超时的.但根据汉诺塔的递归原理,容易发现,对于n阶汉 ...

  8. $bzoj1019-SHOI2008$ 汉诺塔 $dp$

    题面描述 汉诺塔由三根柱子(分别用\(A\ B\ C\)表示)和\(n\)个大小互不相同的空心盘子组成.一开始\(n\)个盘子都摞在柱子\(A\)上,大的在下面,小的在上面,形成了一个塔状的锥形体. ...

  9. Acwing-96-奇怪的汉诺塔(递推)

    链接: https://www.acwing.com/problem/content/description/98/ 题意: 汉诺塔问题,条件如下: 1.这里有A.B.C和D四座塔. 2.这里有n个圆 ...

随机推荐

  1. Djano之数据库--ORM

    一.建立数据库模型类 1.在model里创建模型类.(继承models.Model) 1 class Order(models.Model): 2 TYPE_CHOICE = ( 3 (0, u&qu ...

  2. MySQL全面瓦解4:数据定义-DDL

    前言 SQL的语言分类主要包含如下几种: DDL 数据定义语言 create.drop.alter 数据定义语言 create.drop.alter 语句 . DML 数据操纵语言 insert.de ...

  3. AdaBoost算法详解与python实现

    1. 概述 1.1 集成学习 目前存在各种各样的机器学习算法,例如SVM.决策树.感知机等等.但是实际应用中,或者说在打比赛时,成绩较好的队伍几乎都用了集成学习(ensemble learning)的 ...

  4. [Luogu P3899] [湖南集训]谈笑风生 (主席树)

    题面 传送门:https://www.luogu.org/problemnew/show/P3899 Solution 你们搞的这道题啊,excited! 这题真的很有意思. 首先,我们可以先理解一下 ...

  5. Spring Cloud Alibaba 基础

    Spring Cloud Alibaba 基础 什么是Spring Cloud Alibaba 这里我们不讲解Spring Cloud 和 Spring Cloud Alibaba 的关系,大家自己查 ...

  6. Ethernaut靶场练习(0-5)

    1.Hello Ethernaut 目标: 安装好metamask,熟悉操作命令. 操作过程: 我们先提交一个实例,然后打开游览器F12.然后跟他的提示走. 先输入contract.info(). c ...

  7. 带货直播源码开发采用MySQL有什么优越性

    MySQL是世界上最流行的开源关系数据库,带货直播源码使用MySQL,可实现分钟级别的数据库部署和弹性扩展,不仅经济实惠,而且稳定可靠,易于运维.云数据库 MySQL 提供备份恢复.监控.容灾.快速扩 ...

  8. 百度地图省市php获取

    $api = 'http://api.map.baidu.com/shangquan/forward/?qt=sub_area_list&ext=1&level=3&areac ...

  9. 基于C++语言实现机动车违章处罚管理系统

    这篇文章主要介绍了基于C++语言实现机动车违章处罚管理系统的相关资料,需要的朋友可以参考下 关键代码如下所示: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 ...

  10. 十个Pycharm快捷键——提升效率

    一些比较实用的Pycharm的快捷键,提升编写开发效率. 1.解除语法限制 默认情况下,Pycharm会对代码进行检查,包括但不仅限于代码是否有语法错误,是否符合PEP8规范. 如命名检查,如下图 变 ...