【ACwing 96】奇怪的汉诺塔——区间dp
(题面来自ACwing)
汉诺塔问题,条件如下:
1、这里有A、B、C和D四座塔。
2、这里有n个圆盘,n的数量是恒定的。
3、每个圆盘的尺寸都不相同。
4、所有的圆盘在开始时都堆叠在塔A上,且圆盘尺寸从塔顶到塔底逐渐增大。
5、我们需要将所有的圆盘都从塔A转移到塔D上。
6、每次可以移动一个圆盘,当塔为空塔或者塔顶圆盘尺寸大于被移动圆盘时,可将圆盘移至这座塔上。
请你求出将所有圆盘从塔A移动到塔D,所需的最小移动次数是多少。
输入格式
没有输入
输出格式
对于每一个整数n(1≤n≤12),输出一个满足条件的最小移动次数,每个结果占一行。
三个柱子的汉诺塔问题最小步数存在通项公式:2^n - 1,其中n为圆盘数。这个式子很容易由首项a_1 = 1和递推公式a_n = a_(n-1) * 2 + 1得到。递推式的含义是,先利用2个柱子把上面的n-1个圆盘移到B柱上,把第n个圆盘移到C上,再把B柱上的n-1个移到C上。
四个柱子的汉诺塔问题并不是简单的逐项递推,需要在转移时做出决策。设g[n]为n盘3柱问题的最短步数,f[n]为n盘4柱问题的最短步数,状态转移方程:
f[i] = min(f[i - j] * 2 + g[j])
其中j属于[1, i)。这个式子的含义是,我们选择上面的i - j个圆盘,在4柱模式下把它们移到B柱上,然后用其余的3个柱子把剩下的i个圆盘移到D柱上,最后把B柱上的圆盘在4柱模式下移到D柱上。
代码:
- #include <cstdio>
- #include <cstring>
- #include <iostream>
- using namespace std;
- int g[20], f[20], ans;
- int main() {
- for (int i = 1; i <= 12; ++i)
- g[i] = (1 << i) - 1;
- puts("1"); //特判1个圆盘
- memset(f, 0x3f, sizeof(f));
- f[1] = 1;
- for (int i = 2; i <= 12; ++i) {
- for (int j = 1; j < i; ++j)
- f[i] = min(f[i], 2 * f[j] + g[i - j]);
- printf("%d\n", f[i]);
- }
- return 0;
- }
【ACwing 96】奇怪的汉诺塔——区间dp的更多相关文章
- BZOJ_1019_[SHOI2008]_汉诺塔_(DP)
描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1019 汉诺塔游戏,但是有移动优先级,在不违反原有规则的情况下,给定优先移动目标.求完成游戏所需 ...
- 【BZOJ 1019】 1019: [SHOI2008]汉诺塔 (DP?)
1019: [SHOI2008]汉诺塔 Description 汉诺塔由三根柱子(分别用A B C表示)和n个大小互不相同的空心盘子组成.一开始n个盘子都摞在柱子A上,大的在下面,小的在上面,形成了一 ...
- hdu 1207 汉诺塔II (DP+递推)
汉诺塔II Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submi ...
- 2020牛客寒假算法基础集训营6 C 汉诺塔 (dp 最长下降子序列)
https://ac.nowcoder.com/acm/contest/3007/C 将木板按照Xi从小到大排序,将这时的Yi数列记为Zi数列,则问题变成将Zi划分为尽可能少的若干组上升子序列. 根据 ...
- [递推]B. 【例题2】奇怪汉诺塔
B . [ 例 题 2 ] 奇 怪 汉 诺 塔 B. [例题2]奇怪汉诺塔 B.[例题2]奇怪汉诺塔 题目描述 汉诺塔问题,条件如下: 这里有 A A A. B B B. C C C 和 D D D ...
- T2485 汉诺塔升级版(普及)(递归)
https://www.luogu.org/problem/show?pid=T2485 题目背景 汉诺塔升级了 题目描述 现在我们有N个圆盘和N个柱子,每个圆盘大小都不一样,大的圆盘不能放在小的圆盘 ...
- HDOJ-2175 汉诺塔IX
题目大意:基于汉诺塔原型,第一根柱子上有n个盘子,从上至下编号从1依次递增至n.在最佳移动方案中,第m次所移动的盘子的编号. 解题思路:模拟必然是会超时的.但根据汉诺塔的递归原理,容易发现,对于n阶汉 ...
- $bzoj1019-SHOI2008$ 汉诺塔 $dp$
题面描述 汉诺塔由三根柱子(分别用\(A\ B\ C\)表示)和\(n\)个大小互不相同的空心盘子组成.一开始\(n\)个盘子都摞在柱子\(A\)上,大的在下面,小的在上面,形成了一个塔状的锥形体. ...
- Acwing-96-奇怪的汉诺塔(递推)
链接: https://www.acwing.com/problem/content/description/98/ 题意: 汉诺塔问题,条件如下: 1.这里有A.B.C和D四座塔. 2.这里有n个圆 ...
随机推荐
- Djano之数据库--ORM
一.建立数据库模型类 1.在model里创建模型类.(继承models.Model) 1 class Order(models.Model): 2 TYPE_CHOICE = ( 3 (0, u&qu ...
- MySQL全面瓦解4:数据定义-DDL
前言 SQL的语言分类主要包含如下几种: DDL 数据定义语言 create.drop.alter 数据定义语言 create.drop.alter 语句 . DML 数据操纵语言 insert.de ...
- AdaBoost算法详解与python实现
1. 概述 1.1 集成学习 目前存在各种各样的机器学习算法,例如SVM.决策树.感知机等等.但是实际应用中,或者说在打比赛时,成绩较好的队伍几乎都用了集成学习(ensemble learning)的 ...
- [Luogu P3899] [湖南集训]谈笑风生 (主席树)
题面 传送门:https://www.luogu.org/problemnew/show/P3899 Solution 你们搞的这道题啊,excited! 这题真的很有意思. 首先,我们可以先理解一下 ...
- Spring Cloud Alibaba 基础
Spring Cloud Alibaba 基础 什么是Spring Cloud Alibaba 这里我们不讲解Spring Cloud 和 Spring Cloud Alibaba 的关系,大家自己查 ...
- Ethernaut靶场练习(0-5)
1.Hello Ethernaut 目标: 安装好metamask,熟悉操作命令. 操作过程: 我们先提交一个实例,然后打开游览器F12.然后跟他的提示走. 先输入contract.info(). c ...
- 带货直播源码开发采用MySQL有什么优越性
MySQL是世界上最流行的开源关系数据库,带货直播源码使用MySQL,可实现分钟级别的数据库部署和弹性扩展,不仅经济实惠,而且稳定可靠,易于运维.云数据库 MySQL 提供备份恢复.监控.容灾.快速扩 ...
- 百度地图省市php获取
$api = 'http://api.map.baidu.com/shangquan/forward/?qt=sub_area_list&ext=1&level=3&areac ...
- 基于C++语言实现机动车违章处罚管理系统
这篇文章主要介绍了基于C++语言实现机动车违章处罚管理系统的相关资料,需要的朋友可以参考下 关键代码如下所示: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 ...
- 十个Pycharm快捷键——提升效率
一些比较实用的Pycharm的快捷键,提升编写开发效率. 1.解除语法限制 默认情况下,Pycharm会对代码进行检查,包括但不仅限于代码是否有语法错误,是否符合PEP8规范. 如命名检查,如下图 变 ...