\(
数据范围暗示状压,爪巴。 \\
首先考虑状态量。 \\
我们设计一个关于乐队数量的状态 S, 代表排列好的乐队。\\
\)

eg:

if(Set_排列好的队列 = {1, 2, 5})
then S = 010011

\(
设f[S]为S状态下排列好的最小代价 \\
s[i][j]为前i个位置有多少个j乐队成员 \\
num[j] 乐队j的人数\\
p.s. 以上三者都可以预处理\\
然后我们就可以得出一个结论:
对于第j个乐队
\)

\[f[S]=min(f[ S \ xor \ (1<<j) ]+num[j]−s[r][j]+s[l][j]
\]

\(其中num[j] - s[r][j] + s[l][j]是乐队j的花费\)

这么说来,倒是有一点背包的味道了。


#include <bits/stdc++.h>
#define LL long long
#define il inline
#define rg register
using namespace std;
int t, n, m;
const int maxn = 2e6 + 5;
const int maxs = 2e5 + 5;
il void chkmax(int &a, int b) {a = a > b ? a : b;}
il void chkmin(int &a, int b) {a = a < b ? a : b;}
il int read() {
int x = 0, f = 1; char c = getchar();
while(!isdigit(c)) {
if(c == '-') f = -f;
c = getchar();
}
while(isdigit(c)) {
x = (x << 1) + (x << 3) + c - '0';
c = getchar();
}
return x * f;
}
il void write(int x) {
char c[33] = {0}, tot = 0;
if(x == 0) {puts("0"); return;}
while(x) {c[++ tot] = x % 10 + '0'; x /= 10;}
while(tot) {putchar(c[tot --]);}
return ;
} int f[maxn];
int s[maxs][30], num[30], sum[maxn];
il bool chk(int state, int d) {
return state & (1 << d - 1);
}
il void dfs(int x, int s, int d) {
if(x ^ m) {
if(d == 1) {
sum[s | (1 << x)] = sum[s] + num[x + 1];
dfs(x + 1, (s | (1 << x)), 1);
dfs(x + 1, (s | (1 << x)), 0);
} else {
dfs(x + 1, s, 1);
dfs(x + 1, s, 0);
}
}
}
int main() {
n = read(), m = read();
for(int i = 1, x;i <= n;i ++) {
x = read();
for(int j = 1;j <= m;j ++) {
s[i][j] = s[i - 1][j];
}
s[i][x] ++, num[x] ++;
}
dfs(0, 0, 0); dfs(0, 0, 1);
memset(f, 0x3f, sizeof(f));
f[0] = 0;
for(int i = 1;i < (1 << m);i ++) {
for(int j = 1;j <= m;j ++) {
int l = sum[i ^ (1 << j - 1)];
int r = sum[i];
if(chk(i, j)){
chkmin(f[i], f[i ^ (1 << j - 1)] + (r - l) - (s[r][j] - s[l][j]));
}
}
}
cout << f[(1 << m) - 1];
return 0;
}

P3694 邦邦的大合唱站队 题解的更多相关文章

  1. 状压DP 【洛谷P3694】 邦邦的大合唱站队

    [洛谷P3694] 邦邦的大合唱站队 题目背景 BanG Dream!里的所有偶像乐队要一起大合唱,不过在排队上出了一些问题. 题目描述 N个偶像排成一列,他们来自M个不同的乐队.每个团队至少有一个偶 ...

  2. 洛谷P3694 邦邦的大合唱站队/签到题

    P3694 邦邦的大合唱站队/签到题 题目背景 BanG Dream!里的所有偶像乐队要一起大合唱,不过在排队上出了一些问题. 题目描述 N个偶像排成一列,他们来自M个不同的乐队.每个团队至少有一个偶 ...

  3. P3694 邦邦的大合唱站队/签到题(状压dp)

    P3694 邦邦的大合唱站队/签到题 题目背景 BanG Dream!里的所有偶像乐队要一起大合唱,不过在排队上出了一些问题. 题目描述 N个偶像排成一列,他们来自M个不同的乐队.每个团队至少有一个偶 ...

  4. P3694 邦邦的大合唱站队 (状压DP)

    题目背景 BanG Dream!里的所有偶像乐队要一起大合唱,不过在排队上出了一些问题. 题目描述 N个偶像排成一列,他们来自M个不同的乐队.每个团队至少有一个偶像. 现在要求重新安排队列,使来自同一 ...

  5. P3694 邦邦的大合唱站队

    题目背景 BanG Dream!里的所有偶像乐队要一起大合唱,不过在排队上出了一些问题. 题目描述 N个偶像排成一列,他们来自M个不同的乐队.每个团队至少有一个偶像. 现在要求重新安排队列,使来自同一 ...

  6. 洛谷P3694 邦邦的大合唱站队【状压dp】

    状压dp 应用思想,找准状态,多考虑状态和\(f\)答案数组的维数(这个题主要就是找出来状态如何转移) 题目背景 \(BanG Dream!\)里的所有偶像乐队要一起大合唱,不过在排队上出了一些问题. ...

  7. Luogu P3694 邦邦的大合唱站队 【状压dp】By cellur925

    题目传送门 最开始学状压的时候...学长就讲的是这个题.当时对于刚好像明白互不侵犯和炮兵阵地的我来说好像在听天书.......因为我当时心里想,这又不是什么棋盘,咋状压啊?!后来发现这样的状压多了去了 ...

  8. *P3694 邦邦的大合唱站队[dp]

    题目描述 N个偶像排成一列,他们来自M个不同的乐队.每个团队至少有一个偶像. 现在要求重新安排队列,使来自同一乐队的偶像连续的站在一起.重新安排的办法是,让若干偶像出列(剩下的偶像不动),然后让出列的 ...

  9. 洛谷 P3694 邦邦的大合唱站队 状压DP

    题目描述 输入输出样例 输入 #1 复制 12 4 1 3 2 4 2 1 2 3 1 1 3 4 输出 #1 复制 7 说明/提示 分析 首先要注意合唱队排好队之后不一定是按\(1.2.3..... ...

随机推荐

  1. Filebeat 根据不同的日志设置不同的索引

    平时在物理机上使用 Filebeat 收集日志时,会编写多个 filebeat 配置文件然后启动多个 filebeat 进程来收集不同路径下的日志并设置相对应的索引.那么如果将所有的日志路径都写到一个 ...

  2. Gerrit 服务搭建和升级详解(包括 H2 数据库迁移 MySQL 步骤)

    1. 安装Gerrit-2.9.5版本(Ubuntu) Gerrit版本:Gerrit-2.9.5.war 操作系统:Ubuntu 16.04.3 JAVA环境:java version " ...

  3. yython爬虫基础知识入门

    Python爬虫 关注公众号"轻松学编程"了解更多. 大纲: 1.获取响应 urllib(python3)/urllib2-urllib(python2) requests(url ...

  4. (三)URI、URL和URN/GET与POST的区别

    (一)URI.URL.URN HTTP使用统一资源标识符(Uniform Resource Identifiers,URI)来传输数据和建立连接. URL是一种特殊类型的URI,包含了用于查找某个资源 ...

  5. php抽奖程序

    //php概率抽奖算法 1.获取总的概率数 2.随机从1到总概率数 3.判断获取的随机数是否在小于等于(就是你随机的数是否在数组值得范围中比如数组为array(1,2,3,4,5,6)则随机出了一个数 ...

  6. python语言编程算法

    编程题 1 台阶问题/斐波那契 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法. fib = lambda n: n if n <= 2 else fi ...

  7. codeforces 1425E,一万种情况的简单题

    大家好,欢迎阅读codeforces专题. 我们今天选中的是codeforces 1425场比赛的E题,这是一场印尼多校联合的ICPC的练习赛.ACM赛制,难度也比较近似.我们今天选择的是其中的一道M ...

  8. JavaScript ES 模块:现代化前端编程必备技能

    自从 ES 模块被添加到规范中后,JavaScript 中的模块就更加简单了.模块按文件分开,异步加载.导出是用 export 关键字定义的:值可以用 import 关键字导入. 虽然导入和导出单个值 ...

  9. Oracle(第二天)

    一.外键(foreign key):constraint , refenerces 例如:sno number(7) constraint fk_sno references student(sno) ...

  10. Electron入门指北

    最近几年最火的桌面化技术,无疑是Qt+和Electron. 两者都有跨平台桌面化技术,并不局限于Windows系统.前者因嵌入式而诞生,在演变过程中,逐步完善了生态以及工具链.后者则是依托于Node. ...