\(
数据范围暗示状压,爪巴。 \\
首先考虑状态量。 \\
我们设计一个关于乐队数量的状态 S, 代表排列好的乐队。\\
\)

eg:

if(Set_排列好的队列 = {1, 2, 5})
then S = 010011

\(
设f[S]为S状态下排列好的最小代价 \\
s[i][j]为前i个位置有多少个j乐队成员 \\
num[j] 乐队j的人数\\
p.s. 以上三者都可以预处理\\
然后我们就可以得出一个结论:
对于第j个乐队
\)

\[f[S]=min(f[ S \ xor \ (1<<j) ]+num[j]−s[r][j]+s[l][j]
\]

\(其中num[j] - s[r][j] + s[l][j]是乐队j的花费\)

这么说来,倒是有一点背包的味道了。


#include <bits/stdc++.h>
#define LL long long
#define il inline
#define rg register
using namespace std;
int t, n, m;
const int maxn = 2e6 + 5;
const int maxs = 2e5 + 5;
il void chkmax(int &a, int b) {a = a > b ? a : b;}
il void chkmin(int &a, int b) {a = a < b ? a : b;}
il int read() {
int x = 0, f = 1; char c = getchar();
while(!isdigit(c)) {
if(c == '-') f = -f;
c = getchar();
}
while(isdigit(c)) {
x = (x << 1) + (x << 3) + c - '0';
c = getchar();
}
return x * f;
}
il void write(int x) {
char c[33] = {0}, tot = 0;
if(x == 0) {puts("0"); return;}
while(x) {c[++ tot] = x % 10 + '0'; x /= 10;}
while(tot) {putchar(c[tot --]);}
return ;
} int f[maxn];
int s[maxs][30], num[30], sum[maxn];
il bool chk(int state, int d) {
return state & (1 << d - 1);
}
il void dfs(int x, int s, int d) {
if(x ^ m) {
if(d == 1) {
sum[s | (1 << x)] = sum[s] + num[x + 1];
dfs(x + 1, (s | (1 << x)), 1);
dfs(x + 1, (s | (1 << x)), 0);
} else {
dfs(x + 1, s, 1);
dfs(x + 1, s, 0);
}
}
}
int main() {
n = read(), m = read();
for(int i = 1, x;i <= n;i ++) {
x = read();
for(int j = 1;j <= m;j ++) {
s[i][j] = s[i - 1][j];
}
s[i][x] ++, num[x] ++;
}
dfs(0, 0, 0); dfs(0, 0, 1);
memset(f, 0x3f, sizeof(f));
f[0] = 0;
for(int i = 1;i < (1 << m);i ++) {
for(int j = 1;j <= m;j ++) {
int l = sum[i ^ (1 << j - 1)];
int r = sum[i];
if(chk(i, j)){
chkmin(f[i], f[i ^ (1 << j - 1)] + (r - l) - (s[r][j] - s[l][j]));
}
}
}
cout << f[(1 << m) - 1];
return 0;
}

P3694 邦邦的大合唱站队 题解的更多相关文章

  1. 状压DP 【洛谷P3694】 邦邦的大合唱站队

    [洛谷P3694] 邦邦的大合唱站队 题目背景 BanG Dream!里的所有偶像乐队要一起大合唱,不过在排队上出了一些问题. 题目描述 N个偶像排成一列,他们来自M个不同的乐队.每个团队至少有一个偶 ...

  2. 洛谷P3694 邦邦的大合唱站队/签到题

    P3694 邦邦的大合唱站队/签到题 题目背景 BanG Dream!里的所有偶像乐队要一起大合唱,不过在排队上出了一些问题. 题目描述 N个偶像排成一列,他们来自M个不同的乐队.每个团队至少有一个偶 ...

  3. P3694 邦邦的大合唱站队/签到题(状压dp)

    P3694 邦邦的大合唱站队/签到题 题目背景 BanG Dream!里的所有偶像乐队要一起大合唱,不过在排队上出了一些问题. 题目描述 N个偶像排成一列,他们来自M个不同的乐队.每个团队至少有一个偶 ...

  4. P3694 邦邦的大合唱站队 (状压DP)

    题目背景 BanG Dream!里的所有偶像乐队要一起大合唱,不过在排队上出了一些问题. 题目描述 N个偶像排成一列,他们来自M个不同的乐队.每个团队至少有一个偶像. 现在要求重新安排队列,使来自同一 ...

  5. P3694 邦邦的大合唱站队

    题目背景 BanG Dream!里的所有偶像乐队要一起大合唱,不过在排队上出了一些问题. 题目描述 N个偶像排成一列,他们来自M个不同的乐队.每个团队至少有一个偶像. 现在要求重新安排队列,使来自同一 ...

  6. 洛谷P3694 邦邦的大合唱站队【状压dp】

    状压dp 应用思想,找准状态,多考虑状态和\(f\)答案数组的维数(这个题主要就是找出来状态如何转移) 题目背景 \(BanG Dream!\)里的所有偶像乐队要一起大合唱,不过在排队上出了一些问题. ...

  7. Luogu P3694 邦邦的大合唱站队 【状压dp】By cellur925

    题目传送门 最开始学状压的时候...学长就讲的是这个题.当时对于刚好像明白互不侵犯和炮兵阵地的我来说好像在听天书.......因为我当时心里想,这又不是什么棋盘,咋状压啊?!后来发现这样的状压多了去了 ...

  8. *P3694 邦邦的大合唱站队[dp]

    题目描述 N个偶像排成一列,他们来自M个不同的乐队.每个团队至少有一个偶像. 现在要求重新安排队列,使来自同一乐队的偶像连续的站在一起.重新安排的办法是,让若干偶像出列(剩下的偶像不动),然后让出列的 ...

  9. 洛谷 P3694 邦邦的大合唱站队 状压DP

    题目描述 输入输出样例 输入 #1 复制 12 4 1 3 2 4 2 1 2 3 1 1 3 4 输出 #1 复制 7 说明/提示 分析 首先要注意合唱队排好队之后不一定是按\(1.2.3..... ...

随机推荐

  1. E. Tree Queries 解析(思維、LCA)

    Codeforce 1328 E. Tree Queries 解析(思維.LCA) 今天我們來看看CF1328E 題目連結 題目 給你一棵樹,並且給你\(m\le2e5\)個詢問(包含\(k\)個點) ...

  2. 自动化测试之Selenium篇(一):环境搭建

    当前无论找工作或者是实际项目应用,自动化测试扮演着非常重要的角色,今天我们来学习下Selenium的环境搭建 Selenium简述 Selenium是一个强大的开源Web功能测试工具系列 可进行读入测 ...

  3. 模板——Fhq_treap

    $Fhq$ $treap$ #include <bits/stdc++.h> using namespace std; const int MAXN=100100; int n,root, ...

  4. Android Google官方文档解析之——System Permissions

    Android is a privilege-separated operating system, in which each application runs with a distinct sy ...

  5. 转载:Pycharm的常用快捷键

    一直想着找一下pycharm的快捷键,但是每次都忘记找了,这次刚好碰到一个很全的,就直接借用别人的来当作自己的笔记ba 转载来源:https://www.cnblogs.com/liangmingsh ...

  6. 这么好?中科图新项目经理教你开发LocaSpace功能

    LocaSpace是专注于实景三维数据应用的三维数字地球软件,为开发者提供强大.稳定的SDK服务,花费很少的精力即可在自己产品中集成某项功能.   我们将于2018年7月18日至7月20日举办&quo ...

  7. python_socket_tcp_文件传输

    server.py import json import struct import socket # 接收 sk = socket.socket() # sk.bind(('127.0.0.1',9 ...

  8. ptmalloc tcmalloc jemalloc 总结的总结 及覆盖原理

    windows下还有 detours库可以hook

  9. maven 笔记2

    maven 中央工厂的位置:D:\dubbo\apache-maven-3.2.5\lib D:\dubbo\apache-maven-3.2.5\lib pom-4.0.0.xml reposito ...

  10. Java POI导入word, 带图片

    1.导入文件示例,word中简历表格模板 2.代码示例分两部分,一部分读取图片 /** * 导入word(基本信息,word格式) * @param staffId * @param baseInfo ...