题面

Grigory has n n magic stones, conveniently numbered from \(1\) to \(n\). The charge of the \(i\)-th stone is equal to \(c_i\).

Sometimes Grigory gets bored and selects some inner stone (that is, some stone with index \(i\), where \(2 \le i \le n-1\)), and after that synchronizes it with neighboring stones. After that, the chosen stone loses its own charge, but acquires the charges from neighboring stones. In other words, its charge \(c_i\) changes to \(c_i' = c_{i + 1} + c_{i - 1} - c_i\)

Andrew, Grigory's friend, also has n n stones with charges \(t_i\). Grigory is curious, whether there exists a sequence of zero or more synchronization operations, which transforms charges of Grigory's stones into charges of corresponding Andrew's stones, that is, changes \(c_i\) into \(t_i\) for all \(i\)?

题意

给定两个数组 \(c\) 和 \(t\),一次操作可以把 \(c_i\) 变成 \(c_{i-1}+c_{i+1}-c_{i} \ (2 \le i \le n-1)\),问若干次操作后,可不可以把 \(c\) 数组变成 \(t\)

思路

设 \(a\) 为 \(c\) 的差分数组(即 \(a_i=c_i-c_{i-1}\))

每对 \(c_i\) 进行一次操作后:

\[a_i=c_i-c_{i-1}=(c_{i+1}-c_{i-1}-c_i)-c_{i-1}=c_{i+1}-c_i=a_{i+1}
\]

\[a_{i+1}=c_{i+1}-c{i}=c_{i+1}-(c_{i+1}-c_{i-1}-c_i)=c_i-c_{i-1}=a_{i}
\]

所以,每次操作会将 \(c\) 的差分数组交换两个数,只要判一下 \(c\) 与 \(t\) 的差分数组是否相同即可

代码

#include <bits/stdc++.h>
using namespace std;
int n,a[100001],b[100001],c[100001],d[100001];
int main() {
cin >> n;
for (int i = 1;i <= n;i++) {
cin >> a[i];
if (i ^ 1) b[i-1] = a[i]-a[i-1];
}
sort(b+1,b+n);
for (int i = 1;i <= n;i++) {
scanf("%d",&c[i]);
if (i ^ 1) d[i-1] = c[i]-c[i-1];
}
sort(d+1,d+n);
if (a[1] ^ c[1] || a[n] ^ c[n]) {
printf("No");
return 0;
}
for (int i = 1;i < n;i++)
if (b[i] ^ d[i]) {
printf("No");
return 0;
}
printf("Yes");
return 0;
}

【CF1110E】 Magic Stones - 差分的更多相关文章

  1. CF1110E Magic Stones 差分

    传送门 将原数组差分一下,设\(d_i = c_{i+1} - c_i\) 考虑在\(i\)位置的一次操作会如何影响差分数组 \(d_{i+1}' = c_{i+1} - (c_{i+1} + c_{ ...

  2. CF1110E Magic Stones(构造题)

    这场CF怎么这么多构造题…… 题目链接:CF原网 洛谷 题目大意:给定两个长度为 $n$ 的序列 $c$ 和 $t$.每次我们可以对 $c_i(2\le i<n)$ 进行一次操作,也就是把 $c ...

  3. [CF1110E]Magic Stones

    题目大意:有一个长度为$n(n\leqslant10^5)$的数列$c$,问是否可以经过若干次变换变成数列$t$,一次变换为$c'_i=c_{i+1}+c_{i-1}-c_i$ 题解:思考一次变换的本 ...

  4. Magic Stones CodeForces - 1110E (思维+差分)

    E. Magic Stones time limit per test 1 second memory limit per test 256 megabytes input standard inpu ...

  5. E. Magic Stones CF 思维题

    E. Magic Stones time limit per test 1 second memory limit per test 256 megabytes input standard inpu ...

  6. CF 1110 E. Magic Stones

    E. Magic Stones 链接 题意: 给定两个数组,每次可以对一个数组选一个位置i($2 \leq i \leq n - 1$),让a[i]=a[i-1]+a[i+1]-a[i],或者b[i] ...

  7. Codeforces.1110E.Magic Stones(思路 差分)

    题目链接 听dalao说很nb,做做看(然而不小心知道题解了). \(Description\) 给定长为\(n\)的序列\(A_i\)和\(B_i\).你可以进行任意多次操作,每次操作任选一个\(i ...

  8. 【Codeforces 1110E】Magic Stones

    Codeforces 1110 E 题意:给定两个数组,从第一个数组开始,每次可以挑选一个数,把它变化成左右两数之和减去原来的数,问是否可以将第一个数组转化成第二个. 思路: 结论:两个数组可以互相转 ...

  9. 「日常训练」Magic Stones(CodeForces-1110E)

    题意 给定两个数组c和t,可以对c数组中的任何元素变换\(c_i\)​成\(c_{i+1}+c_{i-1}-c_i\)​,问c数组在若干次变换后能否变换成t数组. 分析 这种魔法题目我是同样的没做过. ...

随机推荐

  1. 用c#自己实现一个简单的JSON解析器

    一.JSON格式介绍 JSON(JavaScript Object Notation) 是一种轻量级的数据交换格式.相对于另一种数据交换格式 XML,JSON 有着很多优点.例如易读性更好,占用空间更 ...

  2. VS code 的集成终端Integrated terminal 的颜色问题

    其实是默认终端的配色问题在使用vs code时,运行代码时,控制台是这样子的,搞得我很难受 一块一块的 其实是默认终端的配色问题 默认终端一般是powershell,还可以是cmd,或者git bas ...

  3. StringBuilder和 String的区别?

    String在进行运算时(如赋值.拼接等)会产生一个新的实例,而 StringBuilder则不会.所以在大 量字符串拼接或频繁对某一字符串进行操作时最好使用 StringBuilder,不要使用 S ...

  4. Linux内存大页设置

    实际环境中,遇到3次由于内存大页设置参数不合理或者错误,导致系统内存不足,或者数据库内存不足的问题. 按照如下方式,推荐设置大页参考下发设置! 参考HugePages on Oracle Linux ...

  5. 【揭秘】阿里测试框架,各大CTO良心力荐

    自动化测试因其节约成本.提高效率.减少手动干预等优势已经日渐成为测试人员的“潮流”,从业人员日益清楚地明白实现自动化框架是软件自动化项目成功的关键因素之一.本篇文章将从 什么是真正的自动化测试框架.自 ...

  6. Monster Audio 使用教程 (八) Vst3 使用侧链功能

    Monster Audio对 Vst3 插件支持侧链功能,例如,我们插入一个Waves C1 comp Stereo 效果器 然后在侧链处,就可以选择任意一个音轨的信号,作为侧链信号源. 注意,只有v ...

  7. mysql中的DDL,DML,DQL,DCL

    SQL语言一共分为4大类:数据定义语言DDL,数据操纵语言DML,数据查询语言DQL,数据控制语言DCL 1.数据定义语言DDL(Data Definition Language) 对象: 数据库和表 ...

  8. Microsoft Cloud App Security 微软的云应用安全

    1.概述 微软2015年收购的一家云安全创业公司 Adallom 正式推出产品,同时更名为微软 Cloud App Security.Adallom 成立于 2012年,是一家 SaaS 云安全公司, ...

  9. idea 配置多个tomcat引发的血案

    javax.management.InstanceNotFoundException: Catalina:type=Server 修改tomcat端口时却仍是8080 没有使用在idea tomcat ...

  10. PHP symlink() 函数

    定义和用法 symlink() 函数创建一个从指定名称连接的现存目标文件开始的符号连接. 如果成功,该函数返回 TRUE.如果失败,则返回 FALSE. 语法 symlink(target,link) ...