论文:FCOS: Fully Convolutional One-Stage Object Detection

 

 

0.简介

摘要:

  • one-stage;44.7% in AP with single-model and single-scale testing
  • solve object detection in a per-pixel prediction fashion
  • anchor-free
  • simple。所有anchor相关的超参没有了;不用通过计算IOU来决定谁是能参与训练与预测的positive sample。(当然,选出的高分positive样本,在训练时,还是要和ground truth计算IOU的)

 

作者点名叫板FasterRCNN, SSD, YOLO这些anchor-based模型,指出如下存在的问题:

  1. 模型效果对anchor的超参敏感。如每个点对应的anchor数量、大小、比例。
  2. 尽管anchor设置了几个大小、比例,但这些尺寸仍然是固定的。无法处理尺度跨度较大的目标们。
  3. 正负样本不平衡。每张图有180K个anchor-boxes,但大部分都是负样本。
  4. 决定哪些是正样本来参与训练与预测,也需要如IOU这样很大 的运算量。

并呼吁整个领域一起思考,所谓的目标检测范式——anchor,真的是必需的吗?

 

作者称自己新的框架有如下优势:

  1. 现在目标检测和其他任务结合了。可以复用其他领域(语义分割)关于FCN的idea。
  2. 减少了设计的参数。
  3. 避免计算了IOU来决定谁是能参与训练与预测的positive sample。效率高。
  4. FOCS也可以被当作一个RPN,用到two-stage检测器中。比anchor-based的RPN更好用。

 

1.网络结构

ResNet+FPN网络,后接几个分支,其中一个是分类,分类采用的C个分类器二分类,这些都不用多说,重点是Regression和Center-ness分支。Regression预测不是anchor-box/proposed-rigon的调整了,而是直接预测feature-map上一点所属于某一目标的框的大小(l, t , r ,b)。Center-ness是为了减少一些低质量的点预测出的目标框,每个点预测出一个(0,1)的系数,它描述的是此点与预测出的框的中心的举例。最终给预测框排序是按Center-ness与分类得分乘积的结果来排。

 

2.框回归——直接、自由

作者舍弃anchor-based的方法,回归阶段不是预测anchor-box/proposed-rigon的调整,直接预测一个物体的大小、比例,完全自由,输出结果(l, t, r ,b)——此点到物体框的左、上、右、下距离,就确定了整个物体框的大小、比例,而点也不是在框的正中心了。如果一个位置的点,落在了多个bounding box里,就产生了歧义,作者直接规定选择最小面积的那个作为他的回归目标(这里说的应该是多尺寸网络的问题吧,指特征图上一个点在不同尺度分支里预测了多个物体,返回到原图正好是一个点,那么在原图中选择要区域小的那个)。

 

3.Center-ness

在FOCS中用了多尺度预测后,发现具体那些anchor-based算法还有不小差距。作者观察到是因为是由于很多距离物体中心很远的location点预测出了质量很低的bounding box。于是在网络中加入center-ness ,来抑制这些点。

与分类分支平行的地方加入center-ness分支(在COCO数据集上,如果加在与regression平行的地方会得到更好的AP,但本文默认前者设计,正如第一节中的网络结构图),对于feature map上的每个点,此分支输出一个(0,1)的数值,它描述的是此点举例它负责的物体的框的中心的距离(注意因为在FCOS中,position点已经不是物体框正中心了嘛。),在测试阶段,选择positiive的bounding box所根据的final score排序,来源于center-ness×分类得分。(训练阶段应该是没有这样操作一下,只是把这部分算了一下BCE-loss加在总的loss里了)最后NMS得出最终检测结果。

FCOS: Fully Convolutional One-Stage Object Detection的更多相关文章

  1. 论文阅读 | FCOS: Fully Convolutional One-Stage Object Detection

    论文阅读——FCOS: Fully Convolutional One-Stage Object Detection 概述 目前anchor-free大热,从DenseBoxes到CornerNet. ...

  2. [C4W3] Convolutional Neural Networks - Object detection

    第三周 目标检测(Object detection) 目标定位(Object localization) 大家好,欢迎回来,这一周我们学习的主要内容是对象检测,它是计算机视觉领域中一个新兴的应用方向, ...

  3. 论文阅读笔记五十七:FCOS: Fully Convolutional One-Stage Object Detection(CVPR2019)

    论文原址:https://arxiv.org/abs/1904.01355 github: tinyurl.com/FCOSv1 摘要 本文提出了一个基于全卷积的单阶段检测网络,类似于语义分割,针对每 ...

  4. (转)Awesome Object Detection

    Awesome Object Detection 2018-08-10 09:30:40 This blog is copied from: https://github.com/amusi/awes ...

  5. object detection 总结

    1.基础 自己对于YOLOV1,2,3都比较熟悉. RCNN也比较熟悉.这个是自己目前掌握的基础2.第一步 看一下2019年的井喷的anchor free的网络3.第二步 看一下以往,引用多的网路4. ...

  6. tensorfolw配置过程中遇到的一些问题及其解决过程的记录(配置SqueezeDet: Unified, Small, Low Power Fully Convolutional Neural Networks for Real-Time Object Detection for Autonomous Driving)

    今天看到一篇关于检测的论文<SqueezeDet: Unified, Small, Low Power Fully Convolutional Neural Networks for Real- ...

  7. 论文阅读笔记三十五:R-FCN:Object Detection via Region-based Fully Convolutional Networks(CVPR2016)

    论文源址:https://arxiv.org/abs/1605.06409 开源代码:https://github.com/PureDiors/pytorch_RFCN 摘要 提出了基于区域的全卷积网 ...

  8. 『计算机视觉』R-FCN:Object Detection via Region-based Fully Convolutional Networks

    一.网络介绍 参考文章:R-FCN详解 论文地址:Object Detection via Region-based Fully Convolutional Networks R-FCN是Faster ...

  9. 中文版 R-FCN: Object Detection via Region-based Fully Convolutional Networks

    R-FCN: Object Detection via Region-based Fully Convolutional Networks 摘要 我们提出了基于区域的全卷积网络,以实现准确和高效的目标 ...

随机推荐

  1. Shell基本语法---if语句

    if语句 格式 #单分支 if [ 条件判断 ]; then 执行动作 fi if [ 条件判断 ]; then 执行动作 else 执行动作 fi #多分支 if [条件判断]; then 执行动作 ...

  2. ant design pro/前端/JS:实现本地运行https

    工具:github---mkcert 用于生成本地证书 ant p版本:1.0.0 这里我只说如何给antp部署https,以及会遇到的问题解决,其他请看原文参考 1.用mkcert生成证书,去git ...

  3. 地图热点 jquery.image-maps.js 的使用

    在我悠闲了几天之后,我们后端给了我个任务,地图热点问题.简单来说,就是后台划出热点区域,设置链接,前端拿到数据渲染页面,显示热点区域.我主要使用了jquery.image-maps.js,并且添加了一 ...

  4. Kubernetes 教程:根据 PID 获取 Pod 名称

    原文链接:https://fuckcloudnative.io/posts/find-kubernetes-pod-info-from-process-id/ 在管理 Kubernetes 集群的过程 ...

  5. 友好城市dp

    // // Created by Arc on 2020/4/27. //对了,这篇题解的代码是小白自己写的.有啥错误还请各位大佬多多包涵. /* * 某国有一条大河(一条大河~~~~,波浪宽~~~~ ...

  6. JavaScript 中的模块化

    JavaScript 中的模块化 最早的基于立即执行函数,闭包的模块化 const MountClickModule = function(){  let num = 0;  const handle ...

  7. WPF 半透明 模糊效果 Aero效果(1)

    先看看效果图 目前网上找到了2种实现方式,一种是 .NET Framework4.5及以后有自带的 WindowChrome 效果,一种是 WindowsAPI  dwmapi.dll  ,但这两种在 ...

  8. Python os.stat_float_times() 方法

    概述 os.stat_float_times() 方法用于决定stat_result是否以float对象显示时间戳.高佣联盟 www.cgewang.com 语法 stat_float_times() ...

  9. PHP timezone_version_get() 函数

    ------------恢复内容开始------------ 实例 返回时区数据库的版本: <?phpecho timezone_version_get();?> 运行实例 » 定义和用法 ...

  10. 5.15 牛客挑战赛40 C 小V和字符串 数位dp 计数问题

    LINK:小V和字符串 容易想到只有1个数相同的 才能有贡献. 知道两个01串 那么容易得到最小步数 大体上就是 第一个串的最前的1和第二个串最前的1进行匹配. 容易想到设f[i][j]表示 前i位1 ...