欢迎访问我的GitHub

https://github.com/zq2599/blog_demos

内容:所有原创文章分类汇总及配套源码,涉及Java、Docker、Kubernetes、DevOPS等;

本文是《Flink的DataSource三部曲》系列的第一篇,该系列旨在通过实战学习和了解Flink的DataSource,为以后的深入学习打好基础,由以下三部分组成:

  1. 直接API:即本篇,除了准备环境和工程,还学习了StreamExecutionEnvironment提供的用来创建数据来的API;
  2. 内置connector:StreamExecutionEnvironment的addSource方法,入参可以是flink内置的connector,例如kafka、RabbitMQ等;
  3. 自定义:StreamExecutionEnvironment的addSource方法,入参可以是自定义的SourceFunction实现类;

Flink的DataSource三部曲文章链接

  1. 《Flink的DataSource三部曲之一:直接API》
  2. 《Flink的DataSource三部曲之二:内置connector》
  3. 《Flink的DataSource三部曲之三:自定义》

关于Flink的DataSource

官方对DataSource的解释:Sources are where your program reads its input from,即DataSource是应用的数据来源,如下图的两个红框所示:

DataSource类型

对于常见的文本读入、kafka、RabbitMQ等数据来源,可以直接使用Flink提供的API或者connector,如果这些满足不了需求,还可以自己开发,下图是我按照自己的理解梳理的:

环境和版本

熟练掌握内置DataSource的最好办法就是实战,本次实战的环境和版本如下:

  1. JDK:1.8.0_211
  2. Flink:1.9.2
  3. Maven:3.6.0
  4. 操作系统:macOS Catalina 10.15.3 (MacBook Pro 13-inch, 2018)
  5. IDEA:2018.3.5 (Ultimate Edition)

源码下载

如果您不想写代码,整个系列的源码可在GitHub下载到,地址和链接信息如下表所示(https://github.com/zq2599/blog_demos):

名称 链接 备注
项目主页 https://github.com/zq2599/blog_demos 该项目在GitHub上的主页
git仓库地址(https) https://github.com/zq2599/blog_demos.git 该项目源码的仓库地址,https协议
git仓库地址(ssh) git@github.com:zq2599/blog_demos.git 该项目源码的仓库地址,ssh协议

这个git项目中有多个文件夹,本章的应用在flinkdatasourcedemo文件夹下,如下图红框所示:

环境和版本

本次实战的环境和版本如下:

  1. JDK:1.8.0_211
  2. Flink:1.9.2
  3. Maven:3.6.0
  4. 操作系统:macOS Catalina 10.15.3 (MacBook Pro 13-inch, 2018)
  5. IDEA:2018.3.5 (Ultimate Edition)

创建工程

  1. 在控制台执行以下命令就会进入创建flink应用的交互模式,按提示输入gourpId和artifactId,就会创建一个flink应用(我输入的groupId是com.bolingcavalry,artifactId是flinkdatasourcedemo):
mvn \
archetype:generate \
-DarchetypeGroupId=org.apache.flink \
-DarchetypeArtifactId=flink-quickstart-java \
-DarchetypeVersion=1.9.2
  1. 现在maven工程已生成,用IDEA导入这个工程,如下图:

  2. 以maven的类型导入:

  3. 导入成功的样子:

  4. 项目创建成功,可以开始写代码实战了;

辅助类Splitter

实战中有个功能常用到:将字符串用空格分割,转成Tuple2类型的集合,这里将此算子做成一个公共类Splitter.java,代码如下:

package com.bolingcavalry;

import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.util.Collector;
import org.apache.flink.util.StringUtils; public class Splitter implements FlatMapFunction<String, Tuple2<String, Integer>> {
@Override
public void flatMap(String s, Collector<Tuple2<String, Integer>> collector) throws Exception { if(StringUtils.isNullOrWhitespaceOnly(s)) {
System.out.println("invalid line");
return;
} for(String word : s.split(" ")) {
collector.collect(new Tuple2<String, Integer>(word, 1));
}
}
}

准备完毕,可以开始实战了,先从最简单的Socket开始。

Socket DataSource

Socket DataSource的功能是监听指定IP的指定端口,读取网络数据;

  1. 在刚才新建的工程中创建一个类Socket.java:
package com.bolingcavalry.api;

import com.bolingcavalry.Splitter;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.time.Time; public class Socket {
public static void main(String[] args) throws Exception {
final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); //监听本地9999端口,读取字符串
DataStream<String> socketDataStream = env.socketTextStream("localhost", 9999); //每五秒钟一次,将当前五秒内所有字符串以空格分割,然后统计单词数量,打印出来
socketDataStream
.flatMap(new Splitter())
.keyBy(0)
.timeWindow(Time.seconds(5))
.sum(1)
.print(); env.execute("API DataSource demo : socket");
}
}

从上述代码可见,StreamExecutionEnvironment.socketTextStream就可以创建Socket类型的DataSource,在控制台执行命令nc -lk 9999,即可进入交互模式,此时输出任何字符串再回车,都会将字符串传输到本机9999端口;

  1. 在IDEA上运行Socket类,启动成功后再回到刚才执行nc -lk 9999的控制台,输入一些字符串再回车,可见Socket的功能已经生效:

集合DataSource(generateSequence)

  1. 基于集合的DataSource,API如下图所示:



2. 先试试最简单的generateSequence,创建指定范围内的数字型的DataSource:

package com.bolingcavalry.api;

import org.apache.flink.api.common.functions.FilterFunction;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; public class GenerateSequence {
public static void main(String[] args) throws Exception {
final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); //并行度为1
env.setParallelism(1); //通过generateSequence得到Long类型的DataSource
DataStream<Long> dataStream = env.generateSequence(1, 10); //做一次过滤,只保留偶数,然后打印
dataStream.filter(new FilterFunction<Long>() {
@Override
public boolean filter(Long aLong) throws Exception {
return 0L==aLong.longValue()%2L;
}
}).print(); env.execute("API DataSource demo : collection");
}
}
  1. 运行时会打印偶数:

集合DataSource(fromElements+fromCollection)

  1. fromElements和fromCollection就在一个类中试了吧,创建FromCollection类,里面是这两个API的用法:
package com.bolingcavalry.api;

import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; import java.util.ArrayList;
import java.util.List; public class FromCollection {
public static void main(String[] args) throws Exception {
final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); //并行度为1
env.setParallelism(1); //创建一个List,里面有两个Tuple2元素
List<Tuple2<String, Integer>> list = new ArrayList<>();
list.add(new Tuple2("aaa", 1));
list.add(new Tuple2("bbb", 1)); //通过List创建DataStream
DataStream<Tuple2<String, Integer>> fromCollectionDataStream = env.fromCollection(list); //通过多个Tuple2元素创建DataStream
DataStream<Tuple2<String, Integer>> fromElementDataStream = env.fromElements(
new Tuple2("ccc", 1),
new Tuple2("ddd", 1),
new Tuple2("aaa", 1)
); //通过union将两个DataStream合成一个
DataStream<Tuple2<String, Integer>> unionDataStream = fromCollectionDataStream.union(fromElementDataStream); //统计每个单词的数量
unionDataStream
.keyBy(0)
.sum(1)
.print(); env.execute("API DataSource demo : collection");
}
}
  1. 运行结果如下:

文件DataSource

  1. 下面的ReadTextFile类会读取绝对路径的文本文件,并对内容做单词统计:
package com.bolingcavalry.api;

import com.bolingcavalry.Splitter;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; public class ReadTextFile {
public static void main(String[] args) throws Exception {
final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
//设置并行度为1
env.setParallelism(1); //用txt文件作为数据源
DataStream<String> textDataStream = env.readTextFile("file:///Users/zhaoqin/temp/202003/14/README.txt", "UTF-8"); //统计单词数量并打印出来
textDataStream
.flatMap(new Splitter())
.keyBy(0)
.sum(1)
.print(); env.execute("API DataSource demo : readTextFile");
}
}
  1. 请确保代码中的绝对路径下存在名为README.txt文件,运行结果如下:



3. 打开StreamExecutionEnvironment.java源码,看一下刚才使用的readTextFile方法实现如下,原来是调用了另一个同名方法,该方法的第三个参数确定了文本文件是一次性读取完毕,还是周期性扫描内容变更,而第四个参数就是周期性扫描的间隔时间:

public DataStreamSource<String> readTextFile(String filePath, String charsetName) {
Preconditions.checkArgument(!StringUtils.isNullOrWhitespaceOnly(filePath), "The file path must not be null or blank."); TextInputFormat format = new TextInputFormat(new Path(filePath));
format.setFilesFilter(FilePathFilter.createDefaultFilter());
TypeInformation<String> typeInfo = BasicTypeInfo.STRING_TYPE_INFO;
format.setCharsetName(charsetName); return readFile(format, filePath, FileProcessingMode.PROCESS_ONCE, -1, typeInfo);
}
  1. 上面的FileProcessingMode是个枚举,源码如下:
@PublicEvolving
public enum FileProcessingMode { /** Processes the current contents of the path and exits. */
PROCESS_ONCE, /** Periodically scans the path for new data. */
PROCESS_CONTINUOUSLY
}
  1. 另外请关注readTextFile方法的filePath参数,这是个URI类型的字符串,除了本地文件路径,还可以是HDFS的地址:hdfs://host:port/file/path

至此,通过直接API创建DataSource的实战就完成了,后面的章节我们继续学习内置connector方式的DataSource;

欢迎关注公众号:程序员欣宸

微信搜索「程序员欣宸」,我是欣宸,期待与您一同畅游Java世界...

https://github.com/zq2599/blog_demos

Flink的DataSource三部曲之一:直接API的更多相关文章

  1. Flink的DataSource三部曲之二:内置connector

    欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...

  2. Flink的DataSource三部曲之三:自定义

    欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...

  3. Flink on Yarn三部曲之一:准备工作

    欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...

  4. Flink on Yarn三部曲之二:部署和设置

    欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...

  5. Flink on Yarn三部曲之三:提交Flink任务

    欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...

  6. Flink入门(五)——DataSet Api编程指南

    Apache Flink Apache Flink 是一个兼顾高吞吐.低延迟.高性能的分布式处理框架.在实时计算崛起的今天,Flink正在飞速发展.由于性能的优势和兼顾批处理,流处理的特性,Flink ...

  7. Flink整合面向用户的数据流SDKs/API(Flink关于弃用Dataset API的论述)

    动机 Flink提供了三种主要的sdk/API来编写程序:Table API/SQL.DataStream API和DataSet API.我们认为这个API太多了,建议弃用DataSet API,而 ...

  8. Flink的sink实战之一:初探

    欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...

  9. Flink基本的API

    Flink使用 DataSet 和 DataStream 代表数据集.DateSet 用于批处理,代表数据是有限的:而 DataStream 用于流数据,代表数据是无界的.数据集中的数据是不可以变的, ...

随机推荐

  1. Python练习题 044:Project Euler 016:乘方结果各个数值之和

    本题来自 Project Euler 第16题:https://projecteuler.net/problem=16 ''' Project Euler 16: Power digit sum 2* ...

  2. 分享一些比较好用的(免费)网站及推荐理由 SMARK

    分享一些比较好用的(免费)网站及推荐理由 --By SMARK 资源类 这里面是一些有供下载的资源的网站等 视频 片库 内容怎么样有待考证 蓝光网 看着还行, 打赏收入 预告片世界 还行, 收入有待考 ...

  3. 一文搞懂AQS及其组件的核心原理

    @ 目录 前言 AbstractQueuedSynchronizer Lock ReentrantLock 加锁 非公平锁/公平锁 lock tryAcquire addWaiter acquireQ ...

  4. 【题解】CF1207E XOR Guessing

    Link 这是一道交互题. \(\text{Solution:}\) 观察到猜的数范围只有\(2^{14}.\) 我第一次想到的方法是,我们可以确定系统选择的两个数的异或和,用这个异或和去穷举所有目标 ...

  5. Mac Idea你不知道的秘密

    导读 工欲善其事必先利其器,日常工作中,知道这些Idea技巧,可以极大提高日常开发效率. 技巧篇 以下内容不分先后顺序 显示类中的方法 搜索 搜索方法,按两下shift 文字搜索,control+sh ...

  6. 从源码的角度解析Mybatis的会话机制

    坐在我旁边的钟同学听说我精通Mybatis源码(我就想不通,是谁透漏了风声),就顺带问了我一个问题:在同一个方法中,Mybatis多次请求数据库,是否要创建多个SqlSession会话? 可能最近撸多 ...

  7. 发布MeteoInfo 1.2.4

    在JLaTeXMath库(http://forge.scilab.org/index.php/p/jlatexmath/)的支持下,实现了利用LaTeX语法显示特殊符号和数学公式的功能.需要在字符串首 ...

  8. day44 Pyhton 数据库Mysql

    内容回顾 什么是进程? 就是为了形容执行中的程序的一种称呼 它是操作系统中资源分配的最小单位 进程之间是数据隔离的,占用操作系统资源相对多 独立存在的 谈谈你对并发的理解 同时有多个任务需要执行,但是 ...

  9. MySQL数据库基础-3

    SQL语言 结构化的查询云烟 有国际标准. 非常容易学习的,关注数据本身,类似于shell SQL解释器 命令行效率比较高 应用编程接口 ODBC:Open Database Connectivity ...

  10. matlab cvx工具箱解决线性优化问题

    题目来源:数学建模算法与应用第二版(司守奎)第一章习题1.4 题目说明 作者在答案中已经说明,求解上述线性规划模型时,尽量用Lingo软件,如果使用Matlab软件求解,需要做变量替换,把二维决策变量 ...