题目描述

春天到了, HDU校园里开满了花, 姹紫嫣红, 非常美丽. 葱头是个爱花的人, 看着校花校草竞相开放, 漫步校园, 心情也变得舒畅. 为了多看看这迷人的校园, 葱头决定, 每次上课都走不同的路线去教室, 但是由于时间问题, 每次只能经过k个地方, 比方说, 这次葱头决定经过2个地方, 那他可以先去问鼎广场看看喷泉, 再去教室, 也可以先到体育场跑几圈, 再到教室. 他非常想知道, 从A 点恰好经过k个点到达B点的方案数, 当然这个数有可能非常大, 所以你只要输出它模上1000的余数就可以了. 你能帮帮他么?? 你可决定了葱头一天能看多少校花哦

Input

输入数据有多组, 每组的第一行是2个整数 n, m(0 < n <= 20, m <= 100) 表示校园内共有n个点, 为了方便起见, 点从0到n-1编号,接着有m行, 每行有两个整数 s, t (0<=s,t<n) 表示从s点能到t点, 注意图是有向的.接着的一行是两个整数T,表示有T组询问(1<=T<=100),

接下来的T行, 每行有三个整数 A, B, k, 表示问你从A 点到 B点恰好经过k个点的方案数 (k < 20), 可以走重复边。如果不存在这样的走法, 则输出0

当n, m都为0的时候输入结束

Output

计算每次询问的方案数, 由于走法很多, 输出其对1000取模的结果

样例

Sample Input

4 4

0 1

0 2

1 3

2 3

2

0 3 2

0 3 3

3 6

0 1

1 0

0 2

2 0

1 2

2 1

2

1 2 1

0 1 3

0 0

Sample Output

2

0

1

3

分析

我们可以用矩阵快速幂来处理这道题,如果a点可以到达b点,那么我们就令f[a][b]=1

然后进行矩阵快速幂\(f[i][j]=f[i][k] \times f[k][j]\)

就相当于i到k有a种走法,k到j有b种走法

那么i到j就有\(a\times b\)种走法

代码

#include<bits/stdc++.h>
#define mod 1000
using namespace std;
const int maxn=205;
int m,n,t;
struct jz{
int sz[maxn][maxn];
jz(){
memset(sz,0,sizeof(sz));
}
};
jz cf(jz aa,jz bb){
jz cc;
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
for(int k=1;k<=n;k++){
(cc.sz[i][j]+=(aa.sz[i][k]*bb.sz[k][j]))%=mod;
}
}
}
return cc;
}
jz solve(jz aa,int kk){
jz bb;
for(int i=1;i<=n;i++){
bb.sz[i][i]=1;
}
while(kk){
if(kk&1) bb=cf(bb,aa);
aa=cf(aa,aa);
kk>>=1;
}
return bb;
}
int main(){
while(scanf("%d%d",&n,&m)!=EOF && (n||m)){
jz a,b;
for(int i=1;i<=m;i++){
int aa,bb;
scanf("%d%d",&aa,&bb);
a.sz[++aa][++bb]=1;
}
scanf("%d",&t);
while(t--){
int aa,bb,cc;
scanf("%d%d%d",&aa,&bb,&cc);
b=a;
b=solve(a,cc);
printf("%d\n",b.sz[++aa][++bb]);
}
}
return 0;
}

How many ways?? HDU - 2157 矩阵快速幂的更多相关文章

  1. HDU 2855 (矩阵快速幂)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2855 题目大意:求$S(n)=\sum_{k=0}^{n}C_{n}^{k}Fibonacci(k)$ ...

  2. HDU 4471 矩阵快速幂 Homework

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4471 解题思路,矩阵快速幂····特殊点特殊处理····· 令h为计算某个数最多须知前h个数,于是写 ...

  3. HDU - 1575——矩阵快速幂问题

    HDU - 1575 题目: A为一个方阵,则Tr A表示A的迹(就是主对角线上各项的和),现要求Tr(A^k)%9973.  Input数据的第一行是一个T,表示有T组数据. 每组数据的第一行有n( ...

  4. hdu 1757 (矩阵快速幂) 一个简单的问题 一个简单的开始

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1757 题意不难理解,当x小于10的时候,数列f(x)=x,当x大于等于10的时候f(x) = a0 * ...

  5. 随手练——HDU 5015 矩阵快速幂

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5015 看到这个限时,我就知道这题不简单~~矩阵快速幂,找递推关系 我们假设第一列为: 23 a1 a2 ...

  6. HDU 3802 矩阵快速幂 化简递推式子 加一点点二次剩余知识

    求$G(a,b,n,p) = (a^{\frac {p-1}{2}}+1)(b^{\frac{p-1}{2}}+1)[(\sqrt{a} + \sqrt{b})^{2F_n} + (\sqrt{a} ...

  7. HDU 5950 矩阵快速幂

    Recursive sequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

  8. hdu 1757 矩阵快速幂 **

    一看正确率这么高,以为是水题可以爽一发,结果是没怎么用过的矩阵快速幂,233 题解链接:点我 #include<iostream> #include<cstring> ; us ...

  9. HDU 4686 矩阵快速幂 Arc of Dream

    由式子的性质发现都是线性的,考虑构造矩阵,先有式子,a[i] = ax * a[i-1] + ay; b[i] = bx*b[i-1] +by; a[i]*b[i] = ax*bx*a[i-1]*b[ ...

随机推荐

  1. 一篇文章快速搞懂 Atomic(原子整数/CAS/ABA/原子引用/原子数组/LongAdder)

    前言 相信大部分开发人员,或多或少都看过或写过并发编程的代码.并发关键字除了Synchronized,还有另一大分支Atomic.如果大家没听过没用过先看基础篇,如果听过用过,请滑至底部看进阶篇,深入 ...

  2. 河青的持久层框架hqbatis

    谈到对数据库的操作,powerbuilder 的嵌入式SQL还是最方便的,增.删.改.查都无比的方便,可惜它落败于BS架构的盛起.java 以mvc的框架,实现对数据库的操作,写起来是相当麻烦,jav ...

  3. 通过与C++程序对比,彻底搞清楚JAVA的对象拷贝

    目录 一.背景 二.JAVA对象拷贝的实现 2.1 浅拷贝 2.2 深拷贝的实现方法一 2.3 深拷贝的实现方法二 2.3.1 C++拷贝构造函数 2.3.2 C++源码 2.3.3 JAVA通过拷贝 ...

  4. 09.Django-信号

    目录 Django中的信号及其用法 Django中内置的signal 内置信号的使用 自定义信号 Django中的信号及其用法 Django中提供了"信号调度",用于在框架执行操作 ...

  5. Nice Jquery Validator 自定义规则

    规则定义方式 (1). 正则 适用于使用单个正则能搞定的验证. // 使用数组包裹正则和错误消息,规则不通过时提示该消息 mobile: [/^1[3458]\d{9}$/, '请检查手机号格式'] ...

  6. mail邮件操作

    目录 1. 概念 1.1. 常见的类型 1.2. 相关协议 1.3. SMTP协议 2. python::smtplib 1. 概念 1.1. 常见的类型 Mail User Agent 收发邮件用的 ...

  7. Scrum Master教你四招,瓦解团队内部刺头

    摘要:<Scrum精髓>一书中将Scrum Master的职责总结为六类:敏捷教练,服务型领导,“保护伞”,“清道夫”,过程权威,“变革代言人”.作为“保护伞“,Scrum Master应 ...

  8. Java 多线程基础(六)线程等待与唤醒

    Java 多线程基础(六)线程等待与唤醒 遇到这样一个场景,当某线程里面的逻辑需要等待异步处理结果返回后才能继续执行.或者说想要把一个异步的操作封装成一个同步的过程.这里就用到了线程等待唤醒机制. 一 ...

  9. rust 代码生成选项

    Available codegen options: -C ar=val -- this option is deprecated and does nothing -C linker=val -- ...

  10. c++逻辑与或非优先级

    按优先级从高到低排列:!.&&.||,!的优先级最高,&&的优先级居中,||的优先级最低.