HNOI 2012/codevs 1994:排队
题目描述 Description
某中学有n 名男同学,m 名女同学和两名老师要排队参加体检。他们排成一条直线,并且任意两名女同学不能相邻,两名老师也不能相邻,那么一共有多少种排法呢?(注意:任意两个人都是不同的) 输入描述 Input Description
输入文件只有一行且为用空格隔开的两个非负整数n 和m,其含义如上所述。 输出描述 Output Description
仅包含一个非负整数,表示不同的排法个数。注意答案可能很大。 样例输入 Sample Input
样例输入1 样例输入2 样例输出 Sample Output 样例输出1 样例输出2 数据范围及提示 Data Size & Hint
对于30%的数据n≤,m≤
对于100%的数据n≤,m≤
题目
这里插空法+高精度重载,我的公式就是ans=A(n,n)*A(n+1,2)*A(n+3,m)+A(n,n)*C(m,1)*A(2,2)*C(n+1,1)*A(n+2,m-1)
先让n个男生站好,让两个老师插n+1个空,再让女生插n+3个空,但是忽略了老师和女生站在一起的情况——两个老师中间夹着一个女生。再让n个男生站好,在女生里选出一个来站在老师中间,老师的位置可以互换。这三个人可以在n+1个空里选一个去站。现在还剩m-1个女生,n+2个空,再让她们去随便站就好啦。
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<cmath>
#include<vector>
#define mod 100000000
#define ll long long
using namespace std;
struct NUM
{
vector<ll>val;
NUM(){val.clear();val.resize(,);}
void clear(){while(!val.back()&&val.size()>) val.pop_back();}
NUM operator+(NUM b)
{
NUM a=*this,c;
int len1=a.val.size();
int len2=b.val.size();
int len3=max(len1,len2)+;
c.val.resize(len3,);
for(int i=;i<len3;++i){
if(i<len1) c.val[i]+=a.val[i];
if(i<len2) c.val[i]+=b.val[i];
if(i<len3-){
c.val[i+]+=c.val[i]/mod;
c.val[i]%=mod;
}
}
c.clear();
return c;
}
NUM operator*(const int x){
NUM a=*this;
int ret=;
for(int i=;i<a.val.size();++i){
a.val[i]*=x;
a.val[i]+=ret;
ret=a.val[i]/mod;
a.val[i]%=mod;
}
a.val.push_back(ret);
a.clear();
return a;
}
NUM operator*(NUM b)
{
NUM a=*this,c;
int len1=a.val.size();
int len2=b.val.size();
int len3=len1+len2;
c.val.resize(len3,);
for(int i=;i<len1;++i)
for(int j=;j<len2;++j)
c.val[i+j]+=a.val[i]*b.val[j];
for(int i=;i<len3-;++i){
c.val[i+]+=c.val[i]/mod;
c.val[i]%=mod;
}
c.clear();
return c;
}
NUM operator/(const int x){
NUM a=*this,b;
int len=a.val.size();
b.val.resize(len,);
for(int i=len-;i>=;--i){
b.val[i]=a.val[i]/x;
a.val[i-]+=a.val[i]%x*mod;
}
b.val[]=a.val[]/x;
b.clear();
return b;
}
NUM operator*=(const int x){return *this=*this*x;}
NUM operator/=(const int x){return *this=*this/x;}
void output(){
int len=val.size();
if(val[len-]) printf("%d",val[len-]);
for(int i=len-;i>=;--i) printf("%08d",val[i]);
}
};
NUM A(int n,int m)
{
NUM zero;
if(m>n) return zero;
NUM ret;
ret.val[]=;
for(int i=n-m+;i<=n;++i) ret*=i;
return ret;
}
NUM C(int n,int m)
{
NUM zero;
if(m>n) return zero;
NUM ret;
ret.val[]=;
for(int i=n-m+;i<=n;++i) ret*=i;
for(int i=;i<=m;++i) ret/=i;
return ret;
}
int main()
{
int n,m;
scanf("%d%d",&n,&m);
if(!n&&!m){
printf("");
return ;
}
NUM ans=A(n,n)*A(n+,)*A(n+,m)+A(n,n)*C(m,)*A(,)*C(n+,)*A(n+,m-);
ans.output();
return ;
}
HNOI 2012/codevs 1994:排队的更多相关文章
- codevs 1994 排队 排列组合+高精度
/* 数学题0.0 最后答案:A(n,n)*A(n+1,2)*A(n+3,m)+A(n,n)*C(m,1)*A(2,2)*C(n+1,1)*A(n+2,m-1); 简单解释一下 +之前的很显然 先排男 ...
- HNOI 2012 永无乡
codevs 1477 永无乡 http://codevs.cn/problem/1477/ 2012年湖南湖北省队选拔赛 时间限制: 1 s 空间限制: 128000 KB 题目描述 Des ...
- 【BZOJ 2733】【HNOI 2012】永无乡 Splay启发式合并
启发式合并而已啦,, 调试时发现的错误点:insert后没有splay,把要拆开的树的点插入另一个树时没有把ch[2]和fa设为null,找第k大时没有先减k,,, 都是常犯的错误,比赛时再这么粗心就 ...
- BZOJ 2733 HNOI 2012 永无乡 平衡树启示式合并
题目大意:有一些岛屿,一開始由一些无向边连接. 后来也有不断的无向边增加,每个岛屿有个一独一无二的重要度,问随意时刻的与一个岛屿联通的全部岛中重要度第k大的岛的编号是什么. 思路:首先连通性一定要用并 ...
- HNOI 2012 矿场搭建
#include<iostream> #include<cstdio> #include<cstdlib> #include<cstring> #def ...
- [HNOI 2012]集合选数
Description 题库链接 对于任意一个正整数 \(n\) ,求出集合 \(\{1,2,\cdots,n\}\) 的满足约束条件"若 \(x\) 在该子集中,则 \(2x\) 和 \( ...
- [BZOJ 2730][HNOI 2012] 矿场搭建
2730: [HNOI2012]矿场搭建 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2113 Solved: 979[Submit][Statu ...
- 解题:HNOI 2012 永无乡
题面 并查集维护连通性,然后暴力启发式合并就完了,记得合并时边DFS边清空数组 #include<cstdio> #include<cstring> #include<a ...
- 「BZOJ 2733」「HNOI 2012」永无乡「启发式合并」
题意 你需要维护若干连通快,有两个操作 合并\(x,y\)所在的连通块 询问\(x\)所在连通块中权值从小到大排第\(k\)的结点编号 题解 可以启发式合并\(splay\),感觉比较好些的 一个连通 ...
随机推荐
- springAop,注解annotation + redis 实现分布式锁
当前流行的系统,就是分布式系统.所谓分布式,我个人理解,是很多的服务分布在不同的机器上,都是相同功能模块.但是容易出现一个问题,就是并发时的问题. 我们传统的锁,只能锁住一个服务器上的方法,让其在一个 ...
- [React] Create a Query Parameter Modal Route with React Router
Routes are some times better served as a modal. If you have a modal (like a login modal) that needs ...
- [Luogu] 矩形覆盖
https://www.luogu.org/problemnew/show/P1034 数据太水 爆搜过掉 #include <iostream> #include <cstdio& ...
- 薛的lca讲课配到题解
2.15 LCA Nearest Common Ancestors POJ 1330 题意:给出一棵树, 询问两个点的最近公共祖先. 思路: $LCA$模板题,请各位掏出各式各样的模板A穿它. #in ...
- CSocket创建套接字返回10093
创建套接字之前未初始化. 即需要添加AfxSocketInit()
- ROS indigo下Kinect v1的驱动安装与调试
ROS indigo下Kinect v1的驱动安装与调试 本文简要叙述了在ROS indigo版本下Kinect v1的驱动安装与调试过程. 1. 实验环境 (1)硬件: 台式机和Kinect v1 ...
- 一步一步学习FastJson1.2.47远程命令执行漏洞
本文首发于先知:https://xz.aliyun.com/t/6914 漏洞分析 FastJson1.2.24 RCE 在分析1.2.47的RCE之前先对FastJson1.2.24版本中的RCE进 ...
- 冲刺阶段——Day3
[今日进展] 完善黄金点游戏的算法与代码架构. 将文字界面改编为图形界面 码云链接:https://gitee.com/jxxydwt1999/20175215-java/blob/master/Go ...
- Spring Security整合JWT,实现单点登录,So Easy~!
前面整理过一篇 SpringBoot Security前后端分离,登录退出等返回json数据,也就是用Spring Security,基于SpringBoot2.1.4 RELEASE前后端分离的情况 ...
- arcgis python pdf合并
# -*- coding: cp936 -*- import arcpy, os, string #Read input parameters from script tool PDFList = s ...