洛谷P1233 木棍加工【单调栈】
题目:https://www.luogu.org/problemnew/show/P1233
题意:
有n根木棍,每根木棍有长度和宽度。
现在要求按某种顺序加工木棍,如果前一根木棍的长度和宽度都大于现在这根,那加工这一根就不需要准备时间,否则需要1分钟准备时间。
问最少的准备时间。
思路:
现在题目要同时维护两个单调不升序列的数目。对于一个属性显然可以通过排序保证他们是单调不升的。
只需在排好序之后求另一个属性的单调不升序列的个数。
这里需要知道Dilworth定理: 偏序集能划分成的最少的全序集的个数与最大反链的元素个数相等。
也就是说最长不升子序列的数目等于最长上升子序列的长度,最长上升子序列的数目等于最长不升子序列的长度。
问题转化成,对一个属性不升排序,再找另一个属性的最长上升子序列的长度。
用单调栈可以实现NlogN的求最长上升子序列长度,具体分析见导弹拦截。
#include<cstdio>
#include<cstdlib>
#include<map>
#include<set>
#include<cstring>
#include<algorithm>
#include<vector>
#include<cmath>
#include<stack>
#include<queue>
#include<iostream> #define inf 0x7fffffff
using namespace std;
typedef long long LL;
typedef pair<string, string> pr; int n;
const int maxn = ;
struct node{
int l, w;
}stick[maxn];
int sss[maxn], cnt = ; bool cmp(node a, node b)
{
return a.l > b.l;
} int main()
{
scanf("%d", &n);
for(int i = ; i <= n; i++){
scanf("%d%d", &stick[i].l, &stick[i].w);
} sort(stick + , stick + + n, cmp); for(int i = ; i <= n; i++){
if(stick[i].w > sss[cnt - ]){
sss[cnt++] = stick[i].w;
//printf("%d\n", sss[cnt - 1]);
}
else{
int pos = lower_bound(sss, sss + cnt, stick[i].w) - sss;
sss[pos] = stick[i].w;
}
}
printf("%d\n", cnt); return ;
}
洛谷P1233 木棍加工【单调栈】的更多相关文章
- 洛谷 P1233 木棍加工 解题报告
P1233 木棍加工 题目描述 一堆木头棍子共有n根,每根棍子的长度和宽度都是已知的.棍子可以被一台机器一个接一个地加工.机器处理一根棍子之前需要准备时间.准备时间是这样定义的: 第一根棍子的准备时间 ...
- 洛谷 P1233 木棍加工
题目描述 一堆木头棍子共有n根,每根棍子的长度和宽度都是已知的.棍子可以被一台机器一个接一个地加工.机器处理一根棍子之前需要准备时间.准备时间是这样定义的: 第一根棍子的准备时间为1分钟: 如果刚处理 ...
- 洛谷P1233 [木棍加工]
主要思路: 这道题一眼看过去就可以贪心.. 首先可以按L排序.. 显然排序之后我们就可以抛开L不管了.. 然后就可以愉快的贪心了.. 细节: 这道题可以看成用 最少的合法序列(详见原题) 装下所有木棍 ...
- 洛谷P1233 木棍加工题解 LIS
突然发现自己把原来学的LIS都忘完了,正好碰见这一道题.|-_-| \(LIS\),也就是最长上升子序列,也就是序列中元素严格单调递增,这个东西有\(n^{2}\)和\(nlog_{2}n\)两种算法 ...
- 洛谷 P1233 木棍加工 题解
题面 Dilworth定理:在数学理论中的序理论与组合数学中,Dilworth定理根据序列划分的最小数量的链描述了任何有限偏序集的宽度. 反链是一种偏序集,其任意两个元素不可比:而链则是一种任意两个元 ...
- 洛谷P4198 楼房重建 单调栈+线段树
正解:单调栈+线段树 解题报告: 传送门! 首先考虑不修改的话就是个单调栈板子题昂,这个就是 然后这题的话,,,我怎么记得之前考试好像有次考到了类似的题目昂,,,?反正我总觉着这方法似曾相识的样子,, ...
- 洛谷P4147 玉蟾宫 单调栈/悬线法
正解:单调栈/悬线法 解题报告: ummm这题我当初做的时候一点思路也没有只会暴力出奇迹:D(啊听说暴力好像能水过去呢,,, 然后当初是看的题解,然后学了下悬线法 然后就忘了:D 然后我现在看发现看不 ...
- 洛谷 P4697 Balloons [CEOI2011] 单调栈/dp (待补充qwq)
正解:单调栈/dp 解题报告: 先放个传送门qwq 话说这题是放在了dp的题单里呢?但是听说好像用单调栈就可以做掉所以我就落实下单调栈的解法好了qwq (umm主要如果dp做好像是要斜率优化凸壳维护双 ...
- 洛谷P3400 仓鼠窝(单调栈)
P3400 仓鼠窝 题目描述 萌萌哒的Created equal是一只小仓鼠,小仓鼠自然有仓鼠窝啦. 仓鼠窝是一个由n*m个格子组成的行数为n.列数为m的矩阵.小仓鼠现在想要知道,这个矩阵中有多少个子 ...
随机推荐
- 《Tsinghua os mooc》第1~4讲 启动、中断、异常和系统调用
资源 OS2018Spring课程资料首页 uCore OS在线实验指导书 ucore实验基准源代码 MOOC OS习题集 OS课堂练习 Piazza问答平台 暂时无法注册 疑问 为什么用户态和内核态 ...
- Java入门请不要放弃,学习路线以及侧重点分析
前言: ●众多的语言,到底哪一门才是适合我的? ●我们为什么要学习Java语言呢? ●Java学习路线 我们可以通过今年最新的TIOBE编程语言排行榜看到,JAVA在"昨天".和& ...
- Linux Shell中的变量声明和一些特殊变量
在SHELL中定义变量比较直接,无类型区别,不需要像Java那样定义好是String还是int等. 声明变量需要遵守或者注意的几点: 变量名和等号之间不能有空格. 变量名首字符必须为字母. 变量名里可 ...
- 恩佐夫博弈+JAVA大数
题意:http://acm.hdu.edu.cn/showproblem.php?pid=5973 根号5复制后200位就行了,因为BigDecimal不支持开根号,除法二分开根. import ja ...
- Python内存相关
Python内存相关 示例一: v1 = [1, 2, 3] v2 = [1, 2 ,3] v1 = 123 v2 = 123 v1 = "dogfa" v2 = "do ...
- 第七章 ZYNQ-MIZ701 GPIO使用之EMIO
7.0难度系数★☆☆☆☆☆☆ 7.1硬件截图 7.1.1 PCB上的位置 7.1.1 PCB上的位置 7.2电路分析 本次实验用到的是LD_A0~LD_A3,管脚定义如下表所示. LD_A0:F17 ...
- Codeforces 1247F. Tree Factory
传送门 正难则反,把链操作成树不好想,那么考虑一下如何把树变成链 每次操作相当于把一个兄弟变成儿子(我把你当兄弟你竟然想把我当儿子.jpg) 注意到每次操作最多只能使树的深度增加 $1$ 因为链的深度 ...
- 1、windows安装npm教程 --参考自https://www.cnblogs.com/jianguo221/p/11487532.html
windows安装npm教程 1.在使用之前,先类掌握3个东西,明白它们是用来干什么的: npm: nodejs 下的包管理器. webpack: 它主要用途是通过CommonJS 的语法把所有 ...
- vue中非父子组件的传值bus的使用
非父子之间的组件传值,可以使用vuex.简单的状态管理,也可以用vue bus vue bus可以实现不同组件间.不同页面间的通信,比如我在A页面出发点击事件,要B页面发生变化,使用方法如下: 全局定 ...
- parseInt parseFloat Number三者转换的方式
1.parseInt:从左到右检测字符串,若能先检测到数字,则将数字转换成整形,否则返回NaN. 2.parseFloat:从左到右检测字符串,若能先检测到数字,则将数字转换成浮点型,否则返回NaN. ...