BZOJ3306: 树
3306: 树
Time Limit: 10 Sec Memory Limit: 256 MB
Submit: 311 Solved: 86
[Submit][Status]
Description
给定一棵大小为 n 的有根点权树,支持以下操作:
• 换根
• 修改点权
• 查询子树最小值
Input
第一行两个整数 n, Q ,分别表示树的大小和操作数。
接下来n行,每行两个整数f,v,第i+1行的两个数表示点i的父亲和点i的权。保证f < i。如 果f = 0,那么i为根。输入数据保证只有i = 1时,f = 0。
接下来 m 行,为以下格式中的一种:
• V x y表示把点x的权改为y
• E x 表示把有根树的根改为点 x
• Q x 表示查询点 x 的子树最小值
Output
对于每个 Q ,输出子树最小值。
Sample Input
0 1
1 2
1 3
Q 1
V 1 6
Q 1
V 2 5
Q 1
V 3 4
Q 1
Sample Output
1
2
3
4
HINT
对于 100% 的数据:n, Q ≤ 10^5。
Source
题解:
关于子树的操作一定是dfs序+线段树。
原来一直不知道怎么执行换根操作,jcvb说 换根不是真的换。
然后yy了一下,总算搞懂了。
我们先以1为根dfs并建立倍增数组,然后如果根换成了rt,然后要查询x子树内的最小值。我们分情况讨论:
1)若x==rt,则直接输出整棵树的最小值
2)若lca(x,rt)不等于x那么直接输出x的子树内的最小值
3)若lca(x,rt)==x那么我们发现整棵树除了x向下走可以到达rt的子树之外全部成了x在rt为根下的子树,那我们把这棵子树中最接近x的节点y求出,在整个区间中踢掉y在1根下子树的范围即可。
然后写好之后WA了好久,于是找大吧的代码对照,对拍,发现查询的时候有可能l>r,于是改了,之后还是WA,然后。。。
找lydsy要来数据发现A了。。。
改了一下输入,原来是这样:
char ch=getchar();int x=read();
改成:
char ch=getchar();
while(ch!='E'&&ch!='V'&&ch!='Q')ch=getchar();
我也是醉了。。。
代码:
#include<cstdio> #include<cstdlib> #include<cmath> #include<cstring> #include<algorithm> #include<iostream> #include<vector> #include<map> #include<set> #include<queue> #include<string> #define inf 1000000000 #define maxn 250000+5 #define maxm 500+100 #define eps 1e-10 #define ll long long #define pa pair<int,int> #define for0(i,n) for(int i=0;i<=(n);i++) #define for1(i,n) for(int i=1;i<=(n);i++) #define for2(i,x,y) for(int i=(x);i<=(y);i++) #define for3(i,x,y) for(int i=(x);i>=(y);i--) #define mod 1000000007 using namespace std; inline int read() { int x=,f=;char ch=getchar(); while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();} while(ch>=''&&ch<=''){x=*x+ch-'';ch=getchar();} return x*f; }
int n,m,q,rt,tot,l[maxn],r[maxn],id[maxn],w[maxn],f[maxn][],dep[maxn],head[maxn];
struct seg{int l,r,mi;}t[*maxn];
struct edge{int go,next;}e[maxn];
inline void insert(int x,int y)
{
e[++tot]=(edge){y,head[x]};head[x]=tot;
}
inline void dfs(int x)
{
l[x]=++m;id[m]=x;
for1(i,)if((<<i)<=dep[x])f[x][i]=f[f[x][i-]][i-];else break;
for(int i=head[x];i;i=e[i].next)
{
int y=e[i].go;f[y][]=x;dep[y]=dep[x]+;
dfs(y);
}
r[x]=m;
}
inline void pushup(int k)
{
t[k].mi=min(t[k<<].mi,t[k<<|].mi);
}
inline void build(int k,int l,int r)
{
t[k].l=l;t[k].r=r;int mid=(l+r)>>;
if(l==r){t[k].mi=w[id[l]];return;}
build(k<<,l,mid);build(k<<|,mid+,r);
pushup(k);
}
inline void change(int k,int x,int y)
{
int l=t[k].l,r=t[k].r,mid=(l+r)>>;
if(l==r){t[k].mi=y;return;}
if(x<=mid)change(k<<,x,y);else change(k<<|,x,y);
pushup(k);
}
inline int query(int k,int x,int y)
{
int l=t[k].l,r=t[k].r,mid=(l+r)>>;
if(l==x&&r==y)return t[k].mi;
if(y<=mid)return query(k<<,x,y);
else if(x>mid)return query(k<<|,x,y);
else return min(query(k<<,x,mid),query(k<<|,mid+,y));
} int main() { //freopen("input.txt","r",stdin); //freopen("output.txt","w",stdout); n=read();q=read();
for1(i,n)insert(read(),i),w[i]=read();
dfs();
build(,,m);rt=;
while(q--)
{
char ch=getchar();int x=read();
if(ch=='V')change(,l[x],read());
else if(ch=='E')rt=x;
else
{
int y=rt;
if(x==y)printf("%d\n",t[].mi);
else if(l[x]<=l[y]&&r[x]>=r[y])
{
int t=dep[y]-dep[x]-;
for0(i,)if(t&(<<i))y=f[y][i];
int ans=inf;
if(l[]<=l[y]-)ans=min(ans,query(,l[],l[y]-));
if(r[y]+<=r[])ans=min(ans,query(,r[y]+,r[]));
printf("%d\n",ans);
}
else printf("%d\n",query(,l[x],r[x]));
}
} return ; }
BZOJ3306: 树的更多相关文章
- [bzoj3306]树_dfs序_线段树_倍增lca
树 bzoj-3306 题目大意:给定一颗n个节点的树,支持换根.修改点权.查询子树最小值. 注释:$1\le n,q\le 10^5$. 想法: 如果没有换根操作,就是$dfs$序+线段树维护区间最 ...
- bzoj3306: 树(dfs序+倍增+线段树)
比较傻逼的一道题... 显然求子树最小值就是求出dfs序用线段树维护嘛 换根的时候树的形态不会改变,所以我们可以根据相对于根的位置分类讨论. 如果询问的x是根就直接输出整棵树的最小值. 如果询问的x是 ...
- [bzoj3306]树——树上倍增+dfs序+线段树
Brief Description 您需要写一种数据结构,支持: 更改一个点的点权 求一个子树的最小点权 换根 Algorithm Design 我们先忽略第三个要求. 看到要求子树的最小点权,我们想 ...
- 「刷题笔记」LCA问题相关
板子 ll lg[40]; ll dep[N],fa[N][40]; ll dis[N]; void dfs(ll u,ll f) { dep[u]=dep[f]+1; fa[u][0]=f; for ...
- 【BZOJ-3306】树 线段树 + DFS序
3306: 树 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 792 Solved: 262[Submit][Status][Discuss] De ...
- 【BZOJ3083/3306】遥远的国度/树 树链剖分+线段树
[BZOJ3083]遥远的国度 Description 描述zcwwzdjn在追杀十分sb的zhx,而zhx逃入了一个遥远的国度.当zcwwzdjn准备进入遥远的国度继续追杀时,守护神RapiD阻拦了 ...
- [bzoj5379]Tree_dfs序_线段树_倍增lca
Tree bzoj-5379 题目大意:给定一棵$n$节点的树.支持:换根.把节点$u$和$v$的$lca$的子树加.询问$u$的子树和. 注释:$1\le n,q\le 3\times 10^5$. ...
- B树——算法导论(25)
B树 1. 简介 在之前我们学习了红黑树,今天再学习一种树--B树.它与红黑树有许多类似的地方,比如都是平衡搜索树,但它们在功能和结构上却有较大的差别. 从功能上看,B树是为磁盘或其他存储设备设计的, ...
- ASP.NET Aries 入门开发教程8:树型列表及自定义右键菜单
前言: 前面几篇重点都在讲普通列表的相关操作. 本篇主要讲树型列表的操作. 框架在设计时,已经把树型列表和普通列表全面统一了操作,用法几乎是一致的. 下面介绍一些差距化的内容: 1:树型列表绑定: v ...
随机推荐
- 九个衡量 Rails 应用性能的小方法
你有个绝佳的商业创意,日复一日地将它完善丰满起来.后来,你雇了一群天赋异禀的开发者.Web 设计师和用户体验专家,他们用一种非常棒的框架--Ruby on Rails 帮你实现长久以来的梦想. 你的网 ...
- 条件随机场CRF简介
http://blog.csdn.net/xmdxcsj/article/details/48790317 Crf模型 1. 定义 一阶(只考虑y前面的一个)线性条件随机场: 相比于最大熵模型的输 ...
- C#&java重学笔记(泛型)
C#部分: 1.泛型的出现主要用于解决类.接口.委托.方法的通用性,通过定义泛型类.接口.委托.方法,可以让不同类型的数据使用相同运算规则处理数据,方便了开发. 2.利用System.Nullable ...
- CF444C DZY Loves Colors
考试完之后打的第一场CF,异常惨烈呀,又只做出了一题了.A题呆滞的看了很久,领悟到了出题者的暗示,应该就是两个点的时候最大吧,不然的话这题肯定特别难敲,YY一发交上去然后就过了.然后就在不停地YY B ...
- HDU 1558 Segment set (并查集+线段非规范相交)
题目链接 题意 : 如果两个线段相交就属于同一集合,查询某条线段所属集合有多少线段,输出. 思路 : 先判断与其他线段是否相交,然后合并. #include <cstdio> #inclu ...
- ExtJS之Ext.getDom
<!DOCTYPE html> <html> <head> <title>ExtJs</title> <meta http-equiv ...
- WCF传输Dataset大数据量 -压缩
由于WCF不能传输DataTable(不能序列化),所以更多项目中都会使用DataSet作为查询集合的首选返回类型,但是由于DataSet会生成很多的状态信息等,所以DataSet体积也会变大,有几种 ...
- 跨平台的加密算法XXTEA 的封装
跨平台的加密算法XXTEA 的封装 XXTEA算法的结构非常简单,只需要执行加法.异或和寄存的硬件即可,且软件实现的代码非常短小,具有可移植性. 维基百科地址:http://en.wikipedia. ...
- UITableViewCell的重用机制原理
UITableViewCell的重用机制原理 来自http://blog.csdn.net/omegayy/article/details/7356823 ====================== ...
- lintcode:打劫房屋II
题目 打劫房屋II 在上次打劫完一条街道之后,窃贼又发现了一个新的可以打劫的地方,但这次所有的房子围成了一个圈,这就意味着第一间房子和最后一间房子是挨着的.每个房子都存放着特定金额的钱.你面临的唯一约 ...