ZOJ Problem Set - 2314
Reactor Cooling

Time Limit: 5 Seconds      Memory Limit: 32768 KB      Special Judge

The terrorist group leaded by a well known international terrorist Ben Bladen is buliding a nuclear reactor to produce plutonium for the nuclear bomb they are planning to create. Being the wicked computer genius of this group, you are responsible for developing the cooling system for the reactor.

The cooling system of the reactor consists of the number of pipes that special cooling liquid flows by. Pipes are connected at special points, called nodes, each pipe has the starting node and the end point. The liquid must flow by the pipe from its start point to its end point and not in the opposite direction.

Let the nodes be numbered from 1 to N. The cooling system must be designed so that the liquid is circulating by the pipes and the amount of the liquid coming to each node (in the unit of time) is equal to the amount of liquid leaving the node. That is, if we designate the amount of liquid going by the pipe from i-th node to j-th as fij, (put fij = 0 if there is no pipe from node i to node j), for each i the following condition must hold:

f i,1+f i,2+...+f i,N = f 1,i+f 2,i+...+f N,i

Each pipe has some finite capacity, therefore for each i and j connected by the pipe must be fij <= cij where cij is the capacity of the pipe. To provide sufficient cooling, the amount of the liquid flowing by the pipe going from i-th to j-th nodes must be at least lij, thus it must be fij >= lij.

Given cij and lij for all pipes, find the amount fij, satisfying the conditions specified above.

This problem contains multiple test cases!

The first line of a multiple input is an integer N, then a blank line followed by N input blocks. Each input block is in the format indicated in the problem description. There is a blank line between input blocks.

The output format consists of N output blocks. There is a blank line between output blocks.

Input

The first line of the input file contains the number N (1 <= N <= 200) - the number of nodes and and M - the number of pipes. The following M lines contain four integer number each - i, j, lij and cij each. There is at most one pipe connecting any two nodes and 0 <= lij <= cij <= 10^5 for all pipes. No pipe connects a node to itself. If there is a pipe from i-th node to j-th, there is no pipe from j-th node to i-th.

Output

On the first line of the output file print YES if there is the way to carry out reactor cooling and NO if there is none. In the first case M integers must follow, k-th number being the amount of liquid flowing by the k-th pipe. Pipes are numbered as they are given in the input file.

Sample Input

2

4 6
1 2 1 2
2 3 1 2
3 4 1 2
4 1 1 2
1 3 1 2
4 2 1 2

4 6
1 2 1 3
2 3 1 3
3 4 1 3
4 1 1 3
1 3 1 3
4 2 1 3

Sample Input

NO

YES
1
2
3
2
1
1


Author:
Andrew Stankevich

Source:
Andrew Stankevich's Contest #1

 
 

题意:

给n个点,及m根pipe,每根pipe用来流躺液体的,单向的,每时每刻每根pipe流进来的物质要等于流出去的物质,要使得m条pipe组成一个循环体,里面流躺物质。

并且满足每根pipe一定的流量限制,范围为[Li,Ri].即要满足每时刻流进来的不能超过Ri(最大流问题),同时最小不能低于Li。

 

思路:每一个点流进来的流=流出去的流

对于每一个点i,令

Mi= sum(i点所有流进来的下界流)– sum(i点所有流出去的下界流)

如果Mi大于0,代表此点必须还要流出去Mi的自由流,那么我们从源点连一条Mi的边到该点。

如果Mi小于0,代表此点必须还要流进来Mi的自由流,那么我们从该点连一条Mi的边到汇点。

如果求S->T的最大流,看是否满流(S的相邻边都流满)。

满流则有解,否则无解。

输出可行流  易知道每条边的下标为0+i*2    故其上面的可行流大小为 low[0+i*2]++edge[i^1].cap   具体看代码

#include <stdio.h>
#include <string.h>
#define VM 250
#define EM 100000
#define inf 0x3f3f3f3f
struct Edge
{
int frm,to,cap,next;
}edge[EM]; int head[VM],dep[VM],ep; //dep为点的层次
void addedge (int cu,int cv,int cw) //第一条边下标必须为偶数
{
edge[ep].frm = cu;
edge[ep].to = cv;
edge[ep].cap = cw;
edge[ep].next = head[cu];
head[cu] = ep;
ep ++;
edge[ep].frm = cv;
edge[ep].to = cu;
edge[ep].cap = 0;
edge[ep].next = head[cv];
head[cv] = ep;
ep ++;
} int BFS (int src,int des) //求出层次图
{
int que[VM],i,front = 0,rear = 0;
memset (dep,-1,sizeof(dep));
que[rear++] = src;
dep[src] = 0;
while (front != rear)
{
int u = que[front++];
front = front%VM;
for (i = head[u];i != -1;i = edge[i].next)
{
int v = edge[i].to;
if (edge[i].cap > 0&&dep[v] == -1) //容量大于0&&未在dep中
{
dep[v] = dep[u] + 1; //建立层次图
que[rear ++] = v;
rear = rear % VM;
if (v == des) //找到汇点 返回
return 1;
}
}
}
return 0;
}
int dinic (int src,int des)
{
int i,res = 0,top;
int stack[VM]; //stack为栈,存储当前增广路
int cur[VM]; //存储当前点的后继 跟head是一样的
while (BFS(src,des)) //if BFS找到增广路
{
memcpy (cur,head,sizeof (head));
int u = src; //u为当前结点
top = 0;
while (1)
{
if (u == des) //增广路已全部进栈
{
int min = inf,loc ;
for (i = 0;i < top;i ++) //找最小的增广跟并loc记录其在stack中位置
if (min > edge[stack[i]].cap) //以便退回该边继续DFS
{
min = edge[stack[i]].cap;
loc = i;
}
for (i = 0;i < top;i ++) //偶数^1 相当加1 奇数^1相当减1 当正向边 = 0&&路径不合适时,正加负减
{ //偶数是正向边,奇数是负向边,边从0开始
edge[stack[i]].cap -= min;
edge[stack[i]^1].cap += min;
} //将增广路中的所有边修改
res += min;
top = loc;
u = edge[stack[top]].frm; //当前结点修改为最小边的起点
}
for (i = cur[u];i != -1;cur[u] = i = edge[i].next) //找到当前结点对应的下一条边
if (edge[i].cap != 0&&dep[u] + 1 == dep[edge[i].to])//不满足条件时,修改cur值(去掉不合适的占)eg:1-->2 1-->3 1-->4 有边 但只有
break; // 1-->4 这条边满足条件 就把1到2、3的边给去掉
if (cur[u] != -1) //当前结点的下一条边存在
{
stack[top ++] = cur[u]; //把该边放入栈中
u = edge[cur[u]].to; //再从下个点开始找
}
else
{
if (top == 0) //当前结点无未遍历的下一条边且栈空,DFS找不到下一条增广路
break;
dep[u] = -1; //当前结点不在增广路中,剔除该点
u = edge[stack[--top]].frm; //退栈 回朔,继续查找
}
}
}
return res;
}
int in[VM],out[VM],low[EM],up[EM];
int main ()///坐标从0或1开始均可 注意别忘记下面的2个初始化
{
int m,v1,v2,n,cas,i;
int src,des;
scanf("%d",&cas);
while (cas--)
{
scanf ("%d%d",&n,&m);
ep = 0;//边的初始化
src =0;
des = n+1;
memset (head,-1,sizeof(head));///这里初始化
memset(in,0,sizeof(in));
memset(out,0,sizeof(out));
for(i=0;i<m;i++)
{
scanf("%d %d %d %d",&v1,&v2,&low[i],&up[i]);
addedge (v1,v2,up[i]-low[i]);
in[v2]+=low[i];
out[v1]+=low[i];
}
int sum=0;
for(i=1;i<=n;i++)
{
if(in[i]>out[i])
{
sum+=in[i]-out[i];
addedge(src,i,in[i]-out[i]);
}
else
if(out[i]>in[i])
addedge(i,des,out[i]-in[i]);
}
int ans = dinic(src,des);
if(sum!=ans)
printf ("NO\n");
else
{
printf("YES\n");
for(i=0;i<2*m;i+=2)
{
printf("%d\n",low[i/2]+edge[i^1].cap);
}
}
}
return 0;
}

zoj2314 经典 无源汇有上下界最大流 并输出可行流的更多相关文章

  1. 【模板】无源汇有上下界可行流(网络流)/ZOJ2314

    先导知识 网络最大流 题目链接 https://vjudge.net/problem/ZOJ-2314 题目大意 多组数据,第一行为数据组数 \(T\). 对于每一组数据,第一行为 \(n,m\) 表 ...

  2. HDU 4940 Destroy Transportation system(无源汇有上下界最大流)

    看不懂题解以及别人说的集合最多只有一个点..... 然后试了下题解的方法http://blog.sina.com.cn/s/blog_6bddecdc0102uzka.html 首先是无源汇有上下界最 ...

  3. SGU 194. Reactor Cooling(无源汇有上下界的网络流)

    时间限制:0.5s 空间限制:6M 题意: 显然就是求一个无源汇有上下界的网络流的可行流的问题 Solution: 没什么好说的,直接判定可行流,输出就好了 code /* 无汇源有上下界的网络流 * ...

  4. hdu 4940 无源汇有上下界最大流

    /* <img src="http://img.blog.csdn.net/20140823174212937?watermark/2/text/aHR0cDovL2Jsb2cuY3N ...

  5. LOJ [#115. 无源汇有上下界可行流](https://loj.ac/problem/115)

    #115. 无源汇有上下界可行流 先扔个板子,上下界的东西一点点搞,写在奇怪的合集里面 Code: #include <cstdio> #include <cstring> # ...

  6. ZOJ 2314 Reactor Cooling(无源汇有上下界可行流)

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=2314 题目大意: 给n个点,及m根pipe,每根pipe用来流躺 ...

  7. 2018.08.20 loj#115. 无源汇有上下界可行流(模板)

    传送门 又get到一个新技能,好兴奋的说啊. 一道无源汇有上下界可行流的模板题. 其实这东西也不难,就是将下界变形而已. 准确来说,就是对于每个点,我们算出会从它那里强制流入与流出的流量,然后与超级源 ...

  8. [loj#115] 无源汇有上下界可行流 网络流

    #115. 无源汇有上下界可行流 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:Special Judge 上传者: 匿名 提交提交记录统计讨论测试数据   题 ...

  9. loj#115. 无源汇有上下界可行流

    \(\color{#0066ff}{ 题目描述 }\) 这是一道模板题. \(n\) 个点,\(m\) 条边,每条边 \(e\) 有一个流量下界 \(\text{lower}(e)\) 和流量上界 \ ...

随机推荐

  1. Android豆瓣图书查询Demo

    原文出自:方杰| http://fangjie.info/?p=26 转载请注明出处 首先先看一下Demo预览效果吧,主要也就是两个Activity.涉及到的技术有zxing开源项目的使用,网络协议豆 ...

  2. openStack工具集

    Openstack发展很猛,很多朋友都很认同,2013年,会很好的解决OpenStack部署的问题,让安装,配置变得更加简单易用. 很多公司都投入人力去做这个,新浪也计划做一个Openstack的is ...

  3. JVM内存堆布局图解分析

    JAVA能够实现跨平台的一个根本原因,是定义了class文件的格式标准,凡是实现该标准的JVM都能够加载并解释该class文件,据此也可以知道,为啥Java语言的执行速度比C/C++语言执行的速度要慢 ...

  4. Spring+Mybatis+mysql配置

    mybatis的映射文件 <?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE mapper SY ...

  5. CornerStone 破解 最简单的破解方法

    方法一:最近在用cornerstone这个svn的软件感觉非常不错,但是竟然忘了破解,以至于到了14天试用期的最后一天才开始破解, 其实方法很简单,就是修高试用期的天数,找到plist文件把14天改为 ...

  6. 认识ptrace函数

    认识ptrace函数 这是man对于ptrace这个系统调用的解释 http://man7.org/linux/man-pages/man2/ptrace.2.html #include <sy ...

  7. 【iOS基础】NSURLConnection

    一.大文件下载1.方案:利用NSURLConnection和它的代理方法1> 发送一个请求 // 1.URL NSURL *url = [NSURL URLWithString:@"h ...

  8. 2013国内IT行业薪资对照表【技术岗】

    (本文为转载,具体出处不详) 说薪水,是所有人最关心的问题.我只 想说如果想在薪水上面满意,在中国,没有哪里比垄断国企好.电力.烟草.通信才是应该努力的方向.但是像我们这种搞研发的进IT行业似乎是注定 ...

  9. 2d-x中Lua类型强转问题

    在Lua中,使用CCDictionary进行保存CCSprite对象,但是,在CCDictionary取出来的时候,此时是一个CCObject对象,无法调用子类精灵的一些方法.那只能进行强转的. 那么 ...

  10. QT中关于窗口全屏显示与退出全屏的实现

    近期在学习QT时遇到了很多问题这也是其中一个,个人通过在各种书籍和网络上的查阅找到了一些关于这方面的答案,希望能给大家一些帮助. 首先,在QT中对于窗口显示常用的有这么几个方法可以调用: Qt全屏显示 ...