LDA-线性判别分析(二)
本来是要调研 Latent Dirichlet Allocation 的那个 LDA 的, 没想到查到很多关于 Linear Discriminant Analysis 这个 LDA 的资料。初步看了看,觉得数学味挺浓,一时引起了很大的兴趣;再看看,就有整理一份资料的冲动了。网上查到的相关文章大都写得不是很详细,而且在概念和记号等方面也比较混乱,因此,在整理本文时,我有意识地牵了一根主线,想让读者读起来有循序渐进的感觉,记号上也力求规范和统一。期间参考了若干文献,以及一些优秀的博客,如 JerryLead、LeftNotEasy、webdancer、xiaodongrush 等的博文,在这里对他们的辛勤写作和无私分享表示感谢。文中的数学推导过程写得比较细,方便有需求的读者参考。此外,文中还通过加注的形式放入了一些自己的理解。 当由于水平有限,错误遗漏之处在所难免, 希望读者朋友可以指出,也欢迎交流。
目录
第 1 节 预备知识
1.1 分类问题的描述
1.2 拉格朗日乘子法
第 2 节 Two-classes 情形的数学推导
2.1 基本思想
2.2 目标函数
2.3 极值求解
2.4 阀值选取
第 3 节 推广到 Multi-classes 情形
3.1 降维问题的描述
3.2 目标函数与极值求解
3.3 降维幅度
第 4 节 其他几个相关问题
若需要本文完整的 PDF 文档,请点击《线性判别分析(LDA)浅析》进行下载!
相关链接
1. JerryLead 的博文 《线性判别分析(Linear Discriminant Analysis)(一)》
2. JerryLead 的博文 《线性判别分析(Linear Discriminant Analysis)(二)》
3. LeftNotEasy 的博文 《机器学习中的数学(4)-线性判别分析(LDA),主成分分析(PCA)》
4. webdancer 的博文 《LDA-linear discriminant analysis》
5. xiaodongrush 的博文 《线性判别式分析-LDA-Linear Discriminant Analysis》
6. peghoty 的博文《关于协方差矩阵的理解》
7. peghoty 的博文《UFLDL教程学习笔记(四)主成分分析》
作者: peghoty
出处: http://blog.csdn.net/itplus/article/details/12038357
欢迎转载/分享, 但请务必声明文章出处.
LDA-线性判别分析(二)的更多相关文章
- LDA线性判别分析
LDA线性判别分析 给定训练集,设法将样例投影到一条直线上,使得同类样例的投影点尽可能的近,异类样例点尽可能的远,对新样本进行分类的时候,将新样本同样的投影,再根据投影得到的位置进行判断,这个新样本的 ...
- PCA主成分分析 ICA独立成分分析 LDA线性判别分析 SVD性质
机器学习(8) -- 降维 核心思想:将数据沿方差最大方向投影,数据更易于区分 简而言之:PCA算法其表现形式是降维,同时也是一种特征融合算法. 对于正交属性空间(对2维空间即为直角坐标系)中的样本点 ...
- LDA线性判别分析原理及python应用(葡萄酒案例分析)
目录 线性判别分析(LDA)数据降维及案例实战 一.LDA是什么 二.计算散布矩阵 三.线性判别式及特征选择 四.样本数据降维投影 五.完整代码 结语 一.LDA是什么 LDA概念及与PCA区别 LD ...
- LDA 线性判别分析
LDA, Linear Discriminant Analysis,线性判别分析.注意与LDA(Latent Dirichlet Allocation,主题生成模型)的区别. 1.引入 上文介绍的PC ...
- LDA线性判别分析(转)
线性判别分析LDA详解 1 Linear Discriminant Analysis 相较于FLD(Fisher Linear Decriminant),LDA假设:1.样本数据服从正态分布,2 ...
- LDA(线性判别分析,Python实现)
源代码: #-*- coding: UTF-8 -*- from numpy import * import numpy def lda(c1,c2): #c1 第一类样本,每行是一个样本 #c2 第 ...
- 机器学习理论基础学习3.2--- Linear classification 线性分类之线性判别分析(LDA)
在学习LDA之前,有必要将其自然语言处理领域的LDA区别开来,在自然语言处理领域, LDA是隐含狄利克雷分布(Latent Dirichlet Allocation,简称LDA),是一种处理文档的主题 ...
- 主成分分析(PCA)与线性判别分析(LDA)
主成分分析 线性.非监督.全局的降维算法 PCA最大方差理论 出发点:在信号处理领域,信号具有较大方差,噪声具有较小方差 目标:最大化投影方差,让数据在主投影方向上方差最大 PCA的求解方法: 对样本 ...
- 运用sklearn进行线性判别分析(LDA)代码实现
基于sklearn的线性判别分析(LDA)代码实现 一.前言及回顾 本文记录使用sklearn库实现有监督的数据降维技术——线性判别分析(LDA).在上一篇LDA线性判别分析原理及python应用(葡 ...
- LDA(Linear discriminate analysis)线性判别分析
LDA 线性判别分析与Fisher算法完全不同 LDA是基于最小错误贝叶斯决策规则的. 在EMG肌电信号分析中,... 未完待续:.....
随机推荐
- World Wind Java开发之十五——载入三维模型
之前的一篇博客是关于载入粗三维模型的,见http://blog.csdn.net/giser_whu/article/details/43452703,这个地方还存在着不能载入纹理的问题,一直没呢解决 ...
- Linux查看网络即时网速
sar -n DEV 1 100 1代表一秒统计并显示一次 100代表统计一百次 使用ntop等工具,就更方便简单了,不过这个更灵活 P.S. sar在sysstat包 来源:http://www.c ...
- IIS注册asp.net 4.0
如果你是先装的VS后添加的IIS功能,那么你需要在ISS中注册NET Framework: 32位的Windows:------------------------------------------ ...
- eclipse项目转android studio详解
第一步:项目导入 向AS中导入项目的方法有两种(其实是一种). 方法一:是在eclipse中先导出为gradle(如图1),然后打开AS,找到项目中的gradle文件,直接导入. 方法二:直接在AS中 ...
- 《第一行代码》学习笔记16-碎片Fragment(1)
1.碎片( Fragment):一种可以嵌入在活动当中的UI片段,能让程序更加合理和充分地利用大屏幕的空间,在平板上的应用广泛. 2.碎片同样包括布局,有自己的生命周期,甚至可理解成一个迷你型的活动. ...
- Javascript判断空对象
最近在项目开发中判断空对象时,用了“!”运算符,结果程序出现bug,找了好久才找到原因. 其实自己范了一些低级错误,现在把自己经验总结一下: 在JavaScript中,任意JavaScript的值都可 ...
- 转载 Silverlight实用窍门系列:1.Silverlight读取外部XML加载配置---(使用WebClient读取XAP包同目录下的XML文件))
转载:程兴亮文章,地址;http://www.cnblogs.com/chengxingliang/archive/2011/02/07/1949579.html 使用WebClient读取XAP包同 ...
- C# winForm启动最小化到任务栏右侧通知栏并交互操作
原文链接:http://blog.sina.com.cn/s/blog_45eaa01a01013u36.html C# winForm启动最小化到任务栏右侧通知栏并交互操作 一.主要功能:(1).程 ...
- Codeforces round #353div2 C
题目来源:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=117863#problem/C 题目大意:给你n个数字,代表这个人在n个银行里面 ...
- MSSQL-资源地址
1.SQL-SERVER客户端管理工具.下载地址 https://msdn.microsoft.com/en-us/library/mt238290.aspx?f=255&MSPPError= ...