【洛谷P4706】取石子
Description
现在 Yopilla 和 yww 要开始玩游戏!
他们在一条直线上标记了 \(n\) 个点,从左往右依次标号为 \(1, 2, ..., n\) 。然后在每个点上放置一些棋子,其中第 \(i\) 个点放置了 \(a_i\) 个棋子。接下来,从 Yopilla 开始操作,双方轮流操作,谁不能操作谁输。每次的操作是:当前操作方选定一个有棋子的点 \(x\) ,然后选择至少一个点 \(x\) 上的棋子,然后把这些棋子全都移动到点 \(x / prime\) 上,其中 \(prime\) 是一个质数,且 \(prime \mid x\)
Yopilla 最初一次操作的策略是随机的:随机找到一个有棋子的点 \(x\) ,随机选择正整数个棋子 \(y\) ,随机转移到一个能转移到的点 \(z\) 。所有棋子可以看作是一样的,换句话说:两种操作不同,当且仅当三元组 \((x, y, z)\) 不同。之后双方都按照最优策略来操作。
Yopilla 想要预测,他能够获胜的概率是多少,答案对 \(998244353\) 取模。
Solution
我们发现,对于每一个数,如果以其幂指数之和为下标来将它们重新排列成一个数组,这个问题就变成了阶梯\(Nim\)问题。一次操作,相当于将一个数移动到其左边。不能移动者输。
事实上我们不需要实现这个重排操作。我们只需要知道每个数重排后是否在奇位置即可。
记输入数列为\(a\),我们统计出所有处于奇位置的数\(x\)的\(a_x\)的异或和\(sum\)。
我们要统计Yopilla一开始的随机操作一共有多少种可能、以及总共有多少种可能,使得操作后局面的先手必败。前者很好计算,就是\(\sum_x a_x*b_x\),其中\(b_x\)表示\(x\)这个数的不同质因子个数。
后者如何计算呢?对操作分类:(1)移动奇位置的数至偶位置、(2)移动偶位置的数至奇位置。
我们枚举所有奇位置的数。假设对该位置\(i\)操作后,总异或和\(sum\)等于0,即操作后先手必败,则\(a_i\)应该由\(a_i\)变成\(target=sum\; \text{xor}\; a_i\),
如果原值比目标值大,那么显然(1)容易满足,选出\(a_i-target\)个数,并将它们通过任意一个质因子移动到偶位置,一共有\(b_i\)种合法情况。
如果原值与目标值相等,则什么也做不了,一改就不满足要求,不作为合法情况考虑。
若原值小于目标值,则考虑(2),枚举所有能转移到\(i\)的偶位置\(j=i*p\)(其中\(p\)是枚举的质数),如果\(a_j \ge target-a_i\),那么合法情况就多了一种,因为\(j\)可以选\(target-a_i\)个数通过唯一一种方式——除去\(p\)——来到达\(i\)。
那么概率也就很好计算了。
Code
#include <cstdio>
using namespace std;
const int N=1000005,MOD=998244353;
int n,a[N];
bool vis[N];
int p[N],pcnt,b[N],c[N];
void sieve(){
int up=1e6;
for(int i=2;i<=up;i++){
if(!vis[i]){
p[++pcnt]=i;
b[i]=c[i]=1;
}
for(int j=1;j<=pcnt&&i*p[j]<=up;j++){
int x=i*p[j];
vis[x]=true;
c[x]=c[i]^1;
if(i%p[j]==0){
b[x]=b[i];
break;
}
b[x]=b[i]+1;
}
}
}
void readData(){
scanf("%d",&n);
for(int i=1;i<=n;i++) scanf("%d",a+i);
}
inline int fmi(int x,int y){
int res=1;
for(;y;x=1LL*x*x%MOD,y>>=1)
if(y&1) res=1LL*res*x%MOD;
return res;
}
void solve(){
int x=0;
for(int i=1;i<=n;i++)
if(c[i]) x^=a[i];
int legal=0;
for(int i=1;i<=n;i++)
if(c[i]){
int best=x^a[i];
if(best<a[i]) legal+=b[i];
else{
int delta=best-a[i];
if(!delta) continue;
for(int j=1;j<=pcnt&&i*p[j]<=n;j++)
if(a[i*p[j]]>=delta) legal++;
}
}
int all=0;
for(int i=1;i<=n;i++)
(all+=1LL*a[i]*b[i]%MOD)%=MOD;
int ans=1LL*legal*fmi(all,MOD-2)%MOD;
printf("%d\n",ans<0?ans+MOD:ans);
}
int main(){
sieve();
readData();
solve();
return 0;
}
【洛谷P4706】取石子的更多相关文章
- 洛谷 P4706 取石子 解题报告
P4706 取石子 题目描述 现在 Yopilla 和 yww 要开始玩游戏! 他们在一条直线上标记了 \(n\) 个点,从左往右依次标号为 \(1, 2, ..., n\) .然后在每个点上放置一些 ...
- 洛谷P2252 取石子游戏(威佐夫博弈)
题目背景 无 题目描述 有两堆石子,数量任意,可以不同.游戏开始由两个人轮流取石子.游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子:二是可以在两堆中同时取走相同数量的石子.最后 ...
- 洛谷——P2252 取石子游戏
P2252 取石子游戏 有两堆石子,数量任意,可以不同.游戏开始由两个人轮流取石子.游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子:二是可以在两堆中同时取走相同数量的石子.最后 ...
- 洛谷P1288 取数游戏II(博弈)
洛谷P1288 取数游戏II 先手必胜的条件需要满足如下中至少 \(1\) 条: 从初始位置向左走到第一个 \(0\) 的位置,经过边的数目为偶数(包含 \(0\) 这条边). 从初始位置向右走到第一 ...
- 洛谷P1880 [NOI1995]石子合并 纪中21日c组T4 2119. 【2016-12-30普及组模拟】环状石子归并
洛谷P1880 石子合并 纪中2119. 环状石子归并 洛谷传送门 题目描述1 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石 ...
- 洛谷 P1392 取数
题面 在做这道题前,先要会他的弱化版(实际一模一样,只是愚蠢的洛谷评测级别差了一档(睿智如姬无夜)) ----------------------------------弱化版------------ ...
- 洛谷P1288 取数游戏II[博弈论]
题目描述 有一个取数的游戏.初始时,给出一个环,环上的每条边上都有一个非负整数.这些整数中至少有一个0.然后,将一枚硬币放在环上的一个节点上.两个玩家就是以这个放硬币的节点为起点开始这个游戏,两人轮流 ...
- 洛谷P1288 取数游戏II
题目描述 有一个取数的游戏.初始时,给出一个环,环上的每条边上都有一个非负整数.这些整数中至少有一个0.然后,将一枚硬币放在环上的一个节点上.两个玩家就是以这个放硬币的节点为起点开始这个游戏,两人轮流 ...
- [洛谷P1880][NOI1995]石子合并
区间DP模板题 区间DP模板Code: ;len<=n;len++) { ;i<=*n-;i++) //区间左端点 { ; //区间右端点 for(int k=i;k<j;k++) ...
随机推荐
- Python模块搜索路径
当一个名为 spam 的模块被导入的时候,解释器首先寻找具有该名称的内置模块.如果没有找到,然后解释器从 sys.path 变量给出的目录列表里寻找名为 spam.py 的文件.sys.path 初始 ...
- Java生成唯一ID
这里我用的是Java提供的java.util.UUID类来产生随机字串,UUID码是什么我就不再赘述,能满足我们的需求就可以. 下面是java代码: import java.util.UUID; pu ...
- [笔试]CVTE 2019提前批 Windows应用开发笔试
不定项选择(x20) 数据结构 以abcdefg的顺序入栈,不可能出现的出栈顺序 一棵二叉树给出中序遍历和后序遍历结果,求左子树的节点数 操作系统 Linux中用什么指令可以找到文件中所有以" ...
- GlusterFS分布式存储集群-1. 部署
参考文档: Quick Start Guide:http://gluster.readthedocs.io/en/latest/Quick-Start-Guide/Quickstart/ Instal ...
- 从Web抓取信息
来源:python编程快速上手——Al Sweigart webbrowser:是 Python 自带的,打开浏览器获取指定页面. requests:从因特网上下载文件和网页. Beautiful S ...
- 编写和调试Android下JNI程序流程
1,切换到Android目录下bin/classes,使用javah命令生成jni所需的头文件,命令类似于:javah com.xxx.ooo,其中,com.xxx为package名称,ooo为包含n ...
- 时间戳使用的bug,你见过么
博主本人前几天给公司项目里写了个禁言和解除禁言的功能,项目中涉及到对时间的处理,因为学得时候也没很注意,就按自己的思路去写了,运行起来发现了一个天大的bug,就是写的延后一年尽然,刚开始就执行了,而且 ...
- LeetCode 566. Reshape the Matrix (C++)
题目: In MATLAB, there is a very useful function called 'reshape', which can reshape a matrix into a n ...
- final文案+美工展示
作业要求:https://edu.cnblogs.com/campus/nenu/SWE2017FALL/homework/1438 团队介绍:thunder 组成员及各位博客地址: 1.王航:htt ...
- Daily Scrum7 11.11
今日任务: 徐钧鸿:结束了SQL和Affairs的移植,修改了连接池,学习C#和java的正则表达式并且完成相关的移植 张艺:个人阅读作业 黄可嵩:完成高亮显示的移植,进一步移植搜索代码 徐方宇:继续 ...