转载:http://www.cnblogs.com/jcchoiling/p/6440709.html

一、大数据性能调优的本质

编程的时候发现一个惊人的规律,软件是不存在的!所有编程高手级别的人无论做什么类型的编程,最终思考的都是硬件方面的问题!最终思考都是在一秒、一毫秒、甚至一纳秒到底是如何运行的,并且基于此进行算法实现和性能调优,最后都是回到了硬件!

在大数据性能的调优,它的本质是硬件的调优!即基于 CPU(计算)、Memory(存储)、IO-Disk/ Network(数据交互) 基础上构建算法和性能调优!我们在计算的时候,数据肯定是存储在内存中的。磁盘IO怎么去处理和网络IO怎么去优化。

二、spark性能调优要点分析

在大数据性能本质的思路上,我们应该需要在那些方面进行调优呢?比如:

1、并行度

2、压缩

3、序列化

4、数据倾斜

5、JVM调优 (例如 JVM 数据结构化优化)

6、内存调优

7、Task性能调优 (例如包含 Mapper 和 Reducer 两种类型的 Task)

8、shuffle网络调优(例如小文件合并)

9、RDD算子调优(例如RDD复用,自定义RDD)

10、数据本地性

11、容错调优

12、参数调优

大数据最怕的就是数据本地性(内存中)和数据倾斜或者叫数据分布不均衡、数据转输,这个是所有分布式系统的问题!数据倾斜其实是跟你的业务紧密相关的。所以调优 Spark 的重点一定是在数据本地性和数据倾斜入手。

1、资源分配和使用:你能够申请多少资源以及如何最优化的使用计算资源

2、关发调优:如何基于 Spark 框架内核原理和运行机制最优化的实现代码功能

3、Shuffle调优:分布式系统必然面临的杀手级别的问题

4、数据倾斜:分布式系统业务本身有数据倾斜

三、spark资源使用原理流程

这是一张来至于官方的经典资源使用流程图,这里有三大组件,第一部份是 Driver 部份,第二就是具体处理数据的部份,第三就是资源管理部份。这一张图中间有一个过程,这表示在程序运行之前向资源管理器申请资源。在实际生产环境中,Cluster Manager 一般都是 Yarn 的 ResourceManager,Driver 会向 ResourceManager 申请计算资源(一般情况下都是在发生计算之前一次性进行申请请求),分配的计算资源就是 CPU Core 和 Memory,我们具体的 Job 里的 Task 就是基于这些分配的内存和 Cores 构建的线程池来运行 Tasks 的。

当然在 Task 运行的过程中会大量的消耗内存,而Task又分为 Mapper 和 Reducer 两种不同类型的 Task,也就是 ShuffleMapTask 和 ResultTask 两种类型,这类有一个很关建的调优点就是如何对内存进行使用。在一个 Task 运行的时候,默应会占用 Executor 总内存的 20%,Shuffle 拉取数据和进行聚合操作等占用了 20% 的内存,剩下的大概有 60% 是用于 RDD 持久化 (例如 cache 数据到内存),Task 在运行时候是跑在 Core 上的,比较理想的是有足够的 Core 同时数据分布比较均匀,这个时候往往能够充分利用集群的资源。

核心参数调优如下:

num-executors
executor-memory
executor-cores
driver-memory
spark.default.parallelizm
spark.storage.memoryFraction
spark.shuffle.memoryFraction
  • num-executors:该参数一定会被设置,Yarn 会按照 Driver 的申请去最终为当前的 Application 生产指定个数的 Executors,实际生产环境下应该分配80个左右 Executors 会比较合适呢。
  • executor-memory:这个定义了每个 Executor 的内存,它与 JVM OOM 紧密相关,很多时候甚至决定了 Spark 运行的性能。实际生产环境下建义是 8G 左右,很多时候 Spark 运行在 Yarn 上,内存占用量不要超过 Yarn 的内存资源的 50%。
  • executor-cores:决定了在 Executors 中能够并行执行的 Tasks 的个数。实际生产环境下应该分配4个左右,一般情况下不要超过 Yarn 队列中 Cores 总数量的 50%。
  • driver-memory:默应是 1G
  • spark.default.parallelizm:并行度问题,如果不设置这个参数,Spark 会跟据 HDFS 中 Block 的个数去设置这一个数量,原理是默应每个 Block 会对应一个 Task,默应情况下,如果数据量不是太多就不可以充份利用 executor 设置的资源,就会浪费了资源。建义设置为 100个,最好 700个左右。Spark官方的建义是每一个 Core 负责 2-3 个 Task。
  • spark.storage.memoryFraction:默应占用 60%,如果计算比较依赖于历史数据则可以调高该参数,当如果计算比较依赖 Shuffle 的话则需要降低该比例。
  • spark.shuffle.memoryFraction:默应占用 20%,如果计算比较依赖 Shuffle 的话则需要调高该比例。

四、spark更高性能的算子

Shuffle 分开两部份,一个是 Mapper 端的Shuffle,另外一个就是 Reducer端的 Shuffle,性能调优有一个很重要的总结就是尽量不使用 Shuffle 类的算子,我们能避免就尽量避免,因为一般进行 Shuffle 的时候,它会把集群中多个节点上的同一个 Key 汇聚在同一个节点上,例如 reduceByKey。然后会优先把结果数据放在内存中,但如果内存不够的话会放到磁盘上。Shuffle 在进行数据抓取之前,为了整个集群的稳定性,它的 Mapper 端会把数据写到本地文件系统。这可能会导致大量磁盘文件的操作。如何避免Shuffle可以考虑以下:

  1. 采用 Map 端的 Join (RDD1 + RDD2 )先把一个 RDD1的数据收集过来,然后再通过 sc.broadcast( ) 把数据广播到 Executor 上;
  2. 如果无法避免Shuffle,退而求其次就是需要更多的机器参与 Shuffle 的过程,这个时候就需要充份地利用 Mapper 端和 Reducer 端机制的计算资源,尽量使用 Mapper 端的 Aggregrate 功能,e.g. aggregrateByKey 操作。相对于 groupByKey而言,更倾向于使用 reduceByKey( ) 和 aggregrateByKey( ) 来取代 groupByKey,因为 groupByKey 不会进行 Mapper 端的操作,aggregrateByKey 可以给予更多的控制。
  3. 如果一批一批地处理数据来说,可以使用 mapPartitions( ),但这个算子有可能会出现 OOM 机会,它会进行 JVM 的 GC 操作!
  4. 如果进行批量插入数据到数据库的话,建义采用foreachPartition( ) 。
  5. 因为我们不希望有太多的数据碎片,所以能批量处理就尽量批量处理,你可以调用 coalesce( ) ,把一个更多的并行度的分片变得更少,假设有一万个数据分片,想把它变得一百个,就可以使用 coalesce( )方法,一般在 filter( ) 算子之后就会用 coalesce( ),这样可以节省资源。
  6. 官方建义使用 repartitionAndSortWithPartitions( )
  7. 数据进行复用时一般都会进行持久化 persisit( )
  8. 建义使用 mapPartitionWithIndex( )
  9. 也建义使用 tree 开头的算子,比如说 treeReduce( ) 和 treeAggregrate( )

总结

大数据必然要思考的核心性能问题不外乎 CPU 计算、内存管理、磁盘和网络IO操作,这是无可避免的,但是可以基于这个基础上进行优化,思考如何最优化的使用计算资源,思考如何在优化代码,在代码层面上防避坠入性能弱点;思考如何减少网络传输和思考如何最大程度的实现数据分布均衡。

在资源管理调优方面可以设置一些参数,比如num-executors、executor-memory、executor-cores、driver-memory、spark.default.parallelizm、spark.storage.memoryFraction、spark.shuffle.memoryFraction

Shuffle 所导致的问题是所有分布式系统都无法避免的,但是如何把 Shuffle 所带来的性能问题减少最低,是一个很可靠的优化方向。Shuffle 的第一阶段即Mapper端在默应情况下会写到本地,而reducer通过网络抓取的同一个 Key 在不同节点上都把它抓取过来,内存可能不够,不够的话就写到磁盘中,这可能会导致大量磁盘文件的操作。在实际编程的时候,可以用一些比较高效的RDD算子,例如 reduceByKey、aggregrateByKey、coalesce、foreachPartition、repartitionAndSortWithPartitions。

spark 性能调优(一) 性能调优的本质、spark资源使用原理、调优要点分析的更多相关文章

  1. Spark数据本地化-->如何达到性能调优的目的

    Spark数据本地化-->如何达到性能调优的目的 1.Spark数据的本地化:移动计算,而不是移动数据 2.Spark中的数据本地化级别: TaskSetManager 的 Locality L ...

  2. [Spark性能调优] 第一章:性能调优的本质、Spark资源使用原理和调优要点分析

    本課主題 大数据性能调优的本质 Spark 性能调优要点分析 Spark 资源使用原理流程 Spark 资源调优最佳实战 Spark 更高性能的算子 引言 我们谈大数据性能调优,到底在谈什么,它的本质 ...

  3. Spark调优_性能调优(一)

    总结一下spark的调优方案--性能调优: 一.调节并行度 1.性能上的调优主要注重一下几点: Excutor的数量 每个Excutor所分配的CPU的数量 每个Excutor所能分配的内存量 Dri ...

  4. Spark(十二)--性能调优篇

    一段程序只能完成功能是没有用的,只能能够稳定.高效率地运行才是生成环境所需要的. 本篇记录了Spark各个角度的调优技巧,以备不时之需. 一.配置参数的方式和观察性能的方式 额...从最基本的开始讲, ...

  5. 性能调优的本质、Spark资源使用原理和调优要点分析

    本课主题 大数据性能调优的本质 Spark 性能调优要点分析 Spark 资源使用原理流程 Spark 资源调优最佳实战 Spark 更高性能的算子 引言 我们谈大数据性能调优,到底在谈什么,它的本质 ...

  6. Spark调优,性能优化

    Spark调优,性能优化 1.使用reduceByKey/aggregateByKey替代groupByKey 2.使用mapPartitions替代普通map 3.使用foreachPartitio ...

  7. 二十种实战调优MySQL性能优化的经验

    二十种实战调优MySQL性能优化的经验 发布时间:2012 年 2 月 15 日 发布者: OurMySQL 来源:web大本营   才被阅读:3,354 次    消灭0评论     本文将为大家介 ...

  8. Mysql数据库调优和性能优化的21条最佳实践

    Mysql数据库调优和性能优化的21条最佳实践 1. 简介 在Web应用程序体系架构中,数据持久层(通常是一个关系数据库)是关键的核心部分,它对系统的性能有非常重要的影响.MySQL是目前使用最多的开 ...

  9. Java生鲜电商平台-API请求性能调优与性能监控

    Java生鲜电商平台-API请求性能调优与性能监控 背景 在做性能分析时,API的执行时间是一个显著的指标,这里使用SpringBoot AOP的方式,通过对接口添加简单注解的方式来打印API的执行时 ...

随机推荐

  1. ubuntu 相关软件设置

    软件篇 1. 网易云音乐软件 首先去官网下载网易云音乐客户端linux版,网址:http://music.163.com/#/download,选择linux版本,然后选择ubuntu 16.04(6 ...

  2. visudo命令详解

    基础命令学习目录首页 原文链接:https://www.cnblogs.com/ImJerryChan/p/6667819.html 目录前言一.介绍二.配置文件简介三.实战配置 前言:    su ...

  3. 前端_JQuery

    使用参考:http://jquery.cuishifeng.cn/ 目录 jQuery是什么 jQuery对象 寻找元素(选择器和筛选器) 选择器 表单属性选择器 筛选器 操作元素(属性.css.文档 ...

  4. Servlet各版本web.xml的头文件配置模板

    原文: http://www.codeweblog.com/servlet%E5%90%84%E7%89%88%E6%9C%ACweb-xml%E7%9A%84%E5%A4%B4%E6%96%87%E ...

  5. 作业 20181127-3 互评Beta版本

    此作业要求参见:https://edu.cnblogs.com/campus/nenu/2018fall/homework/2448 组名:可以低头,但没必要 组长:付佳 组员:张俊余 李文涛 孙赛佳 ...

  6. VirtualBox安装增强功能

    一.安装依赖包 #yum install kernel-headers #yum install kernel-devel #yum install gcc* #yum install make 二. ...

  7. NABCD模型分析

    1.N——need需求 目前,学习英语是所有学生会面临的问题.提高词汇量对学习英语是十分必要的,尤其是对大学生来说对手机的使用特别频繁,我们提高英语词汇量也应该把手机更好的利用起来,利用自己对手机的使 ...

  8. 项目Beta冲刺(团队)第四天

    1.昨天的困难 返回提问者昵称的时候返回信息不全,个别信息没有返回过去 一开始ProgressBar控件的显示有问题 需要实现类似聊天的功能,采用listview承载聊天内容,对于自定义适配器的构建使 ...

  9. 第二次 作业——APP案例分析

    APP案例分析 产品 网易云课堂 选择理由 网易云课堂是从大一就开始使用的一款学习软件,有海量的学习资源,很适合学生课余时间的自主学习 调研,评测 上手体验 第一次打开网易云课堂app的时候,进入的是 ...

  10. javascript 组件化(转载)

    这边只是很简陋的实现了类的继承机制.如果对类的实现有兴趣可以参考我另一篇文章javascript oo实现 我们看下使用方法: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ...